已知函数f(x)=2根号3sinxcosx+2cos²x
展开全部
f(x)=2√3sinxcosx+2cos²x
= √3sin(2x) + cos(2x) +1
= 2( sin(2x)cos(π/6) + cos(2x)sin(π/6) ) +1
= 2sin(2x+π/6) +1
= 2sin[2(x+π/12)] +1
则:
(1)
周期 = 2kπ/2 = kπ (k∈Z),最小正周期 T =2π/2 = π
(2)
当sin[2(x+π/12)]取最大值1时,有: 2(x+π/12) = 2kπ+π/2
可解得: x =kπ+π/6
当k取0时,x=π/6 ∈(0, π/2)区间
因此函数f(x)在(0, π/2)区间可以取到最大值:fmax = 2*1+1 = 3
当sin[2(x+π/12)]取最小值-1时,有:2(x+π/12) = 2kπ+3π/2
可解得:x = kπ+2π/3
但当k取0与-1时,x=2π/3 与 x=-π/3均不在(0, π/2)区间内
因此sin[2(x+π/12)]在(0, π/2)区间取不到-1的理论最小值,
而只能在0和π/2两个边界点处尝试寻找最小值。
x=0时,sin[2(x+π/12)]= 1/2
x=π/2时,sin[2(x+π/12)]= -1/2
于是 sin[2(x+π/12)]的最小值是: -1/2
函数f(x)的最小值: fmin = 2*(-1/2)+1 = 0
综上可知,f(x)在(0, π/2)区间的值域是: (0, 3]
(看题面好像是开区间(0, π/2),因此值域的下限也是开区间)
(3)
显然,f(x)的单调增区间就是sin[2(x+π/12)]的单调增区间。
前面已经分别求出了sin[2(x+π/12)]的极大值点和极小值点,于是容易知道:
单调递增区间是:[kπ+2π/3,kπ+7π/6]
= √3sin(2x) + cos(2x) +1
= 2( sin(2x)cos(π/6) + cos(2x)sin(π/6) ) +1
= 2sin(2x+π/6) +1
= 2sin[2(x+π/12)] +1
则:
(1)
周期 = 2kπ/2 = kπ (k∈Z),最小正周期 T =2π/2 = π
(2)
当sin[2(x+π/12)]取最大值1时,有: 2(x+π/12) = 2kπ+π/2
可解得: x =kπ+π/6
当k取0时,x=π/6 ∈(0, π/2)区间
因此函数f(x)在(0, π/2)区间可以取到最大值:fmax = 2*1+1 = 3
当sin[2(x+π/12)]取最小值-1时,有:2(x+π/12) = 2kπ+3π/2
可解得:x = kπ+2π/3
但当k取0与-1时,x=2π/3 与 x=-π/3均不在(0, π/2)区间内
因此sin[2(x+π/12)]在(0, π/2)区间取不到-1的理论最小值,
而只能在0和π/2两个边界点处尝试寻找最小值。
x=0时,sin[2(x+π/12)]= 1/2
x=π/2时,sin[2(x+π/12)]= -1/2
于是 sin[2(x+π/12)]的最小值是: -1/2
函数f(x)的最小值: fmin = 2*(-1/2)+1 = 0
综上可知,f(x)在(0, π/2)区间的值域是: (0, 3]
(看题面好像是开区间(0, π/2),因此值域的下限也是开区间)
(3)
显然,f(x)的单调增区间就是sin[2(x+π/12)]的单调增区间。
前面已经分别求出了sin[2(x+π/12)]的极大值点和极小值点,于是容易知道:
单调递增区间是:[kπ+2π/3,kπ+7π/6]
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询