平均值与几何平均值的不等式
1个回答
展开全部
算术-几何平均值不等式,简称算几不等式,是一个常见而基本的不等式,表现了算术平均数和几何平均数之间恒定的不等关系。
算术-几何平均值不等式,简称算几不等式,是一个常见而基本的不等式,表现了算术平均数和几何平均数之间恒定的不等关系。设
为n个正实数,它们的算术平均数是
,它们的几何平均数是
。算术-几何平均值不等式表明,对任意的正实数,总有:
等号成立当且仅当。
算术-几何平均值不等式仅适用于正实数,是对数函数之凹性的体现,在数学、自然科学、工程科学以及经济学等其它学科都有应用。
算术-几何平均值不等式有时被称为平均值不等式(或均值不等式),其实后者是一组更广泛的不等式。
一般地,用纯粹的大于号“>”、小于号“
通常不等式中的数是实数,字母也代表实数,不等式的一般形式为F(x,y,……,z)≤G(x,y,……,z )(其中不等号也可以为 中某一个),两边的解析式的公共定义域称为不等式的定义域,不等式既可以表达一个命题,也可以表示一个问题。
一般地,用纯粹的大于号“>”、小于号“
其中,两边的解析式的公共定义域称为不等式的定义域。
整式不等式:
整式不等式两边都是整式(即未知数不在分母上)。
一元一次不等式:含有一个未知数(即一元),并且未知数的次数是1次(即一次)的不等式。如3-X>0
同理:二元一次不等式:含有两个未知数(即二元),并且未知数的次数是1次(即一次)的不等式。
算术-几何平均值不等式,简称算几不等式,是一个常见而基本的不等式,表现了算术平均数和几何平均数之间恒定的不等关系。设
为n个正实数,它们的算术平均数是
,它们的几何平均数是
。算术-几何平均值不等式表明,对任意的正实数,总有:
等号成立当且仅当。
算术-几何平均值不等式仅适用于正实数,是对数函数之凹性的体现,在数学、自然科学、工程科学以及经济学等其它学科都有应用。
算术-几何平均值不等式有时被称为平均值不等式(或均值不等式),其实后者是一组更广泛的不等式。
一般地,用纯粹的大于号“>”、小于号“
通常不等式中的数是实数,字母也代表实数,不等式的一般形式为F(x,y,……,z)≤G(x,y,……,z )(其中不等号也可以为 中某一个),两边的解析式的公共定义域称为不等式的定义域,不等式既可以表达一个命题,也可以表示一个问题。
一般地,用纯粹的大于号“>”、小于号“
其中,两边的解析式的公共定义域称为不等式的定义域。
整式不等式:
整式不等式两边都是整式(即未知数不在分母上)。
一元一次不等式:含有一个未知数(即一元),并且未知数的次数是1次(即一次)的不等式。如3-X>0
同理:二元一次不等式:含有两个未知数(即二元),并且未知数的次数是1次(即一次)的不等式。
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询