3个回答
展开全部
记 A(π,0)。补充线段 AO, 成封闭图形。
I = ∫<L>sin2xdx+(2yx^2-2y)dy
= ∮<L+AO>sin2xdx+(2yx^2-2y)dy + ∫<OA>sin2xdx+(2yx^2-2y)dy
前者用格林公式, 后者 y = 0, dy = 0, 则
I = - ∫∫<D>4xydxdy + ∫<0, π>sin2xdx
= - ∫<0, π>2xdx∫<0, sinx>2ydy - (1/2)[cos2x]<0, π>
= - ∫<0, π>2x(sinx)^2dx - 0 = - ∫<0, π>x(1-cos2x)dx
= - ∫<0, π>xdx + (1/2)∫<0, π>xdsin2x
= -π^2/2 + (1/2)[xsin2x]<0, π> - (1/2)∫<0, π>sin2xdx
= -π^2/2 + (1/4)[cos2x]<0, π> = - (1/2)π^2
I = ∫<L>sin2xdx+(2yx^2-2y)dy
= ∮<L+AO>sin2xdx+(2yx^2-2y)dy + ∫<OA>sin2xdx+(2yx^2-2y)dy
前者用格林公式, 后者 y = 0, dy = 0, 则
I = - ∫∫<D>4xydxdy + ∫<0, π>sin2xdx
= - ∫<0, π>2xdx∫<0, sinx>2ydy - (1/2)[cos2x]<0, π>
= - ∫<0, π>2x(sinx)^2dx - 0 = - ∫<0, π>x(1-cos2x)dx
= - ∫<0, π>xdx + (1/2)∫<0, π>xdsin2x
= -π^2/2 + (1/2)[xsin2x]<0, π> - (1/2)∫<0, π>sin2xdx
= -π^2/2 + (1/4)[cos2x]<0, π> = - (1/2)π^2
本回答被网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询