几何原理是什么?
1个回答
展开全部
欧氏几何公理是欧几里得建立的几个几何公理,也称欧式几何,它的建立,采用了分析与综合的方法,不止是单独一个命题的前提与结论之间的连结,而是所有几何命题的连结成逻辑网路。
五条几何公理:
1.过相异两点,能作且只能作一直线(直线公理)。
2.线段(有限直线)可以任意地延长。
3.以任一点为圆心、任意长为半径,可作一圆(圆公理)。
4.凡是直角都相等(角公理)。
5.两直线被第三条直线所截,如果同侧两内角和小于两个直角, 则两直线则会在该侧相交。
欧氏几何公理建立动机:
古希腊人对於经验几何知识的锤练,首由泰利斯发端,接著是毕氏学派提出「直观性常识的几何原子论」,假设点的长度大於0,从而任何两线段皆可共度。由此尝试给几何建立基础:后来,终因不可共度线段的发现而破产。
这让古希腊哲学家坚决地走向「知识必须再经过逻辑论证」的道路。数学史家 Szabo(详见参考资料3)因而主张:不可共度线段的发现,是促使希腊几何走上演绎形式的关键,其中归谬法扮演著催生的作用,终於导致欧氏几何的诞生。
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询