大学数学求导数,要解题过程?
7个回答
展开全部
y = 4 [x^(2/3) (x-1)^(-1)]
y' = 4 [(2/3)x^(-1/3)(x-1)^(-1) - x^(2/3) (x-1)^(-2)]
= 4 [(2/3)(x-1) - x]/[x^(1/3) (x-1)^2]
= -(4/3)(x+2)/[x^(1/3)(x-1)^2]
y' = 4 [(2/3)x^(-1/3)(x-1)^(-1) - x^(2/3) (x-1)^(-2)]
= 4 [(2/3)(x-1) - x]/[x^(1/3) (x-1)^2]
= -(4/3)(x+2)/[x^(1/3)(x-1)^2]
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
f(x)=4x^(2/3)/(x-1),
则f'(x)=4[(2/3)x^(-1/3)*(x-1)-x^(2/3)]/(x-1)^2
=4(2x-2-3x)/[3(x-1)^2*x^(1/3)]
=-4(x+2)/[3(x-1)^2*x^(1/3)].
则f'(x)=4[(2/3)x^(-1/3)*(x-1)-x^(2/3)]/(x-1)^2
=4(2x-2-3x)/[3(x-1)^2*x^(1/3)]
=-4(x+2)/[3(x-1)^2*x^(1/3)].
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
分析:求函数f(x)=4x^(2/3)/(x-1)地导数,根据(u/v)'=(u'v-uv')/v^2以及(x^n)'=nx^(n-1),所以
f'(x)={(4x^(2/3))'(x-1)-4x^(2/3)×(x-1)'}/(x-1)^2
={-2x^(2/3)/3-8x^(-1/3)}/(x-1)^2
f'(x)={(4x^(2/3))'(x-1)-4x^(2/3)×(x-1)'}/(x-1)^2
={-2x^(2/3)/3-8x^(-1/3)}/(x-1)^2
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询