定积分的性质

 我来答
京斯年0GZ
2022-06-15 · TA获得超过6211个赞
知道小有建树答主
回答量:306
采纳率:100%
帮助的人:74.6万
展开全部

定积分的性质:性质1:设a与b均为常数,则∫a->b[a×f(x)+b×g(x)]dx=a×∫(a->b)f(x)dx+b×∫(a->b)g(x)dx。性质2:如果在区间【a,b】上f(x)恒等于1,那么∫(a->b)1dx=∫(a->b)dx=b-a。

“定积分”的简单性质

性质1:设a与b均为常数,则∫(a->b)[a*f(x)+b*g(x)]dx=a*∫(a->b)f(x)dx+b*∫(a->b)g(x)dx。

性质2:设a<c<b,则∫(a->b)f(x)dx=∫(a->c)f(x)dx+f(c->b)f(x)dx。

性质3:如果在区间【a,b】上f(x)恒等于1,那么∫(a->b)1dx=∫(a->b)dx=b-a。

性质4:如果在区间【a,b】上f(X)>=0,那么∫(a->b)f(x)dx>=0(a<b)。

性质5:设M及m分别是函数f(x)在区间【a,b】上的最大值和最小值,则m(b-a)<=∫(a->b)f(x)dx<=M(b-a)(a<b)。

性质6(定积分中值定理):如果函数f(x)在积分区间【a,b】上连续,那么在【a,b】上至少存在一个点c,使得∫(a->b)f(x)dx=f(c)(b-a)(a<=c<=b)成立。

性质7:若a>b则∫_a^bf(x)=-∫_b^af(x)。

定积分

定积分是积分的一种,是函数f(x)在区间[a,b]上积分和的极限。

一个函数,可以存在不定积分,而不存在定积分;也可以存在定积分,而不存在不定积分。一个连续函数,一定存在定积分和不定积分;若只有有限个间断点,则定积分存在;若有跳跃间断点,则原函数一定不存在,即不定积分一定不存在。

已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式