三角形勾股定理公式及证明方法

 我来答
机器1718
2022-06-30 · TA获得超过6804个赞
知道小有建树答主
回答量:2805
采纳率:99%
帮助的人:158万
展开全部

勾股定理是指直角三角形的两条直角边的平方和等于斜边的平方。接下来分享三角形勾股定理公式及证明方法。

三角形勾股定理公式

1.基本公式

在平面上的一个直角三角形中,两个直角边边长的平方加起来等于斜边长的平方。如果设直角三角形的两条直角边长度分别是a和b,斜边长度是c,那么勾股定理的公式为a ² +b ² =c ²

2.完全公式

a=m,b=(m²/k-k)/2,c=(m²/k+k)/2其中m≥3

(1)当m确定为任意一个≥3的奇数时,k={1,m²的所有小于m的因子}

(2)当m确定为任意一个≥4的偶数时,k={m²/2的所有小于m的偶数因子}

3.常用公式

(1)(3,4,5),(6,8,10)……3n,4n,5n(n是正整数)。

(2)(5,12,13),(7,24,25),(9,40,41)……2n+1,2n²+2n,2n²+2n+1(n是正整数)。

(3)(8,15,17),(12,35,37)……2²*(n+1),[2(n+1)]²-1,[2(n+1)]²+1(n是正整数)。

(4)m²-n²,2mn,m²+n²(m、n均是正整数,m>n)。

三角形勾股定理证明方法

设△ABC为一直角三角形,其直角为∠CAB。

其边为BC、AB和CA,依序绘成四方形CBDE、BAGF和ACIH。

画出过点A之BD、CE的平行线,分别垂直BC和DE于K、L。

分别连接CF、AD,形成△BCF、△BDA。

∠CAB和∠BAG都是直角,因此C、A和G共线,同理可证B、A和H共线。

∠CBD和∠FBA都是直角,所以∠ABD=∠FBC。

因为AB=FB,BD=BC,所以△ABD≌△FBC。

因为A与K和L在同一直线上,所以四边形BDLK=2△ABD。

因为C、A和G在同一直线上,所以正方形BAGF=2△FBC。

因此四边形BDLK=BAGF=AB²。

同理可证,四边形CKLE=ACIH=AC²。

把这两个结果相加,AB²+AC²=BD×BK+KL×KC

由于BD=KL,BD×BK+KL×KC=BD(BK+KC)=BD×BC

由于CBDE是个正方形,因此AB²+AC²=BC²,即a²+b²=c²。

已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式