矩阵的秩 有 R(A,B)=R(B,A) 原因是什么啊
展开全部
根据矩阵A的秩的定义求秩,找 A 中不等于 0 的子式的最高阶数.
一般当行数与列数都较高时,按定义求秩是很麻烦的.
对于行阶梯形矩阵,显然它的秩就等于非零行的行数.因为两个等价的矩阵的秩相等,也可以用初等变换把矩阵化为行阶梯形矩阵.
矩阵经初等变换后其秩不变,因而把矩阵用初等变换化为行阶梯形矩阵,行阶梯形矩阵中非零行的行数即为所求矩阵的秩.这是求矩阵秩的一种常用方法.
请采纳答案,支持我一下.
一般当行数与列数都较高时,按定义求秩是很麻烦的.
对于行阶梯形矩阵,显然它的秩就等于非零行的行数.因为两个等价的矩阵的秩相等,也可以用初等变换把矩阵化为行阶梯形矩阵.
矩阵经初等变换后其秩不变,因而把矩阵用初等变换化为行阶梯形矩阵,行阶梯形矩阵中非零行的行数即为所求矩阵的秩.这是求矩阵秩的一种常用方法.
请采纳答案,支持我一下.
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询