二重积分的几何意义
1个回答
展开全部
二重积分的几何意义是二元函数在空间上的积分,同定积分类似,是某种特定形式的和的极限。本质是求曲顶柱体体积。重积分有着广泛的应用,可以用来计算曲面的面积,平面薄片重心等。
在空间直角坐标系中,二重积分是各部分区域上柱体体积的代数和,在xoy平面上方的取正,在xoy平面下方的取负。某些特殊的被积函数f(x,y)的所表示的曲面和D底面所为围的曲顶柱体的体积公式已知,可以用二重积分的几何意义的来计算。
平面区域的二重积分可以推广为在高维空间中的(有向)曲面上进行积分,称为曲面积分。在空间直角坐标系中,二重积分是各部分区域上柱体体积的代数和,在xoy平面上方的取正,在xoy平面下方的取负。
某些特殊的被积函数f(x,y)的所表示的曲面和D底面所为围的曲顶柱体的体积公式已知,可以用二重积分的几何意义的来计算。
同时二重积分有着广泛的应用,可以用来计算曲面的面积,平面薄片重心,平面薄片转动惯量,平面薄片对质点的引力等等。此外二重积分在实际生活,比如无线电中也被广泛应用。
拉索生物
2024-11-08 广告
2024-11-08 广告
苏州拉索生物芯片科技有限公司是国内首家实现高密度固相基因芯片自主研发、生产和商业化的企业,可提供包含芯片(可定制)、扫描设备、试剂、专业算法及配套软件在内的一体化固相基因芯片解决方案。...
点击进入详情页
本回答由拉索生物提供
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询