方程根号下(x+3)^2+(y-1)^2=|x-y+3|/2表示的为什么是椭圆?

 我来答
天罗网17
2022-06-27 · TA获得超过6200个赞
知道小有建树答主
回答量:306
采纳率:100%
帮助的人:73.7万
展开全部
√[(x+3)^2+(y-1)^2]表示动点P(x,y)到定点F(-3,1)的距离,
|x-y+3|/√2表示动点P(x,y)到定直线L:x-y+3=0的距离d
那么√[(x+3)^2+(y-1)^2]=|x-y+3|/2
即|PF|/d=√2/2∈(0,1)
圆锥曲线统一定义:
P(x,y)到定点F的距离|PF|,
P(x,y)到定直线L的距离d,
(F不在L上),|PF|/d=e(常数),
当e∈(0,1)时,轨迹为椭圆;
当e=1时,轨迹为抛物线;
当e>1时,轨迹为双曲线.
F为曲线的焦点,L为准线.
∵|PF|/d=√2/2∈(0,1)
∴本例中,动点轨迹为椭圆.
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式