可逆线性变换是怎么得到的?

 我来答
帐号已注销
2021-12-14 · TA获得超过77.1万个赞
知道小有建树答主
回答量:4168
采纳率:93%
帮助的人:166万
展开全部

可逆线性变换得到:这是二次型化标准型或规范性,有平方项按平房项一个一个的消,没有平方项创造平方项在线。

是设置的一个可逆性线性变换,因由此可得出 y1 = (1/2)(x1+x2), y2 = (1/2)(x1-x2), y3 = x3 , 故是可逆变换。设V是数域P上的线性空间,σ是V的线性变换,若存在V的变换τ,使στ=τσ=I,其中I为单位变换。

一般来说

一个变换可逆的充分必要条件是这个变换既是单射又是满射。但是,从定理1出发,可以得到有限维线性空间上的线性变换具有一个很好的性质。n维线性空间V.上的线性变换σ是单射的充分必要条件是σ是满射。

推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式