线性代数究竟是为解决什么问题而生的?
1个回答
展开全部
线性代数是大学工科一门基础数学课程,我们可以从线性代数的具体内容说起,大概内容包括行列式、矩阵、线性方程组、向量空间与线性变换、特征值和特征向量、矩阵的对角化,二次型及应用问题等内容。
总之对以后工科,特别是一些理论强的学科学习,线性代数绝对是一个必备的基础课程。
代数的功能是把许多看似不相关的事物“结合在一起”,也就是进行抽象。抽象的目的不是为了显示某些人智商高,而是为了解决问题的方便!为了提高效率。
把一些看似不相关的问题化归为一类问题。线性代数中的一个重要概念是线性空间(对所谓的“加法”和“数乘”满足8条公理的集合),而其元素被称为向量。也就是说,只要满足那么几条公理,我们就可以对一个集合进行线性化处理。
其他数学分支
线性代数是一个成功的理论,其方法已经被应用于数学的其他分支。
模论就是将线性代数中的标量的域用环替代进行研究。
多线性代数将映射的“多变量”问题线性化为每个不同变量的问题,从而产生了张量的概念。
在算子的光谱理论中,通过使用数学分析,可以控制无限维矩阵。
所有这些领域都有非常大的技术难点。
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询