展开全部
y=ln[x+√(1-x^2)]
y'={1/[x+√(1-x^2)]}*[x+√(1-x^2)]'
={1/[x+√(1-x^2)]}*[1+(1/2)*(1-x^2)^(-1/2)*(1-x^2)']
={1/[x+√(1-x^2)]}*[1+(1/2)*(1-x^2)^(-1/2)*(-2x)]
={1/[x+√(1-x^2)]}*[1-x/√(1-x^2)]
={1/[x+√(1-x^2)]}*[√(1-x^2)-x]/√(1-x^2)
=[√(1-x^2)-x]/{[x+√(1-x^2)]*√(1-x^2)}
y'={1/[x+√(1-x^2)]}*[x+√(1-x^2)]'
={1/[x+√(1-x^2)]}*[1+(1/2)*(1-x^2)^(-1/2)*(1-x^2)']
={1/[x+√(1-x^2)]}*[1+(1/2)*(1-x^2)^(-1/2)*(-2x)]
={1/[x+√(1-x^2)]}*[1-x/√(1-x^2)]
={1/[x+√(1-x^2)]}*[√(1-x^2)-x]/√(1-x^2)
=[√(1-x^2)-x]/{[x+√(1-x^2)]*√(1-x^2)}
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询