若A满足A^2-2A-4E=0,证明A+E与A-3E都可逆,且互为逆矩阵
1个回答
展开全部
证明:因为 A^2-2A-4E=0
所以有 (A+E)(A-3E) = E
所以 A+E与A-3E都可逆,且互为逆矩阵.
所以有 (A+E)(A-3E) = E
所以 A+E与A-3E都可逆,且互为逆矩阵.
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
GamryRaman
2023-06-12 广告
2023-06-12 广告
N沟道耗尽型MOS管工作在恒流区时,g极与d极之间的电位有固定的大小关系。这是因为当MOS管工作在恒流区时,由于源极和漏极电压相等,G极电压(即源极电压)为0,而D极电压(即漏极电压)受栅极电压控制。由于G极电压为0,因此在恒流区时,D极电...
点击进入详情页
本回答由GamryRaman提供
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询