二元一次方程的解法步骤
一元二次方程有四种解法:直接开平方法;配方法;公式法;因式分解法。解一元二次方程的基本思想方法为通过“降次”将其化为两个一元一次方程。
1、直接开平方法
形如x²=p或(nx+m)²=p(p≥0)的一元二次方程可采用直接开平方法解一元二次方程。如果方程化成x²=p的形式,那么可得x=±√p。如果方程能化成(nx+m)²=p(p≥0)的形式,那么nx+m=±√p,进而得出方程的根。
2、配方法:用配方法解方程ax²+bx+c=0 (a≠0),先将常数c移到方程右边,将二次项系数化为1,方程两边分别加上一次项系数的一半的平方,方程左边成为一个完全平方式。
3、公式法:把一元二次方程化成一般形式,然后计算判别式△=b²-4ac的值,当b²-4ac≥0时,把各项系数a,b,c的值代入求根公式就可得到方程的根。
4、因式分解法:把方程变形为一边是零,把另一边的二次三项式分解成两个一次因式的积的形式,让两个一次因式分别等于零,得到两个一元一次方程,解这两个一元一次方程所得到的根,就是原方程的两个根。
成立条件
一元二次方程成立必须同时满足三个条件:
1、是整式方程,即等号两边都是整式,方程中如果有分母;且未知数在分母上,那么这个方程就是分式方程,不是一元二次方程,方程中如果有根号,且未知数在根号内,那么这个方程也不是一元二次方程(是无理方程)。
2、只含有一个未知数。
3、未知数项的最高次数是2。
2021-11-22 广告