分子为什么在不停地运动?
1个回答
展开全部
分类: 体育/运动 >> 健身
问题描述:
如何证明分子的运动?
解析:
世界上一切都在运动,运动是事物存在的特性。
1.气体分子运动的特点
(1)气体分子之间的距离很大,距离大约是分子直径的10倍,因此除了相互碰撞或者跟器壁碰撞外,气体分子不受力的作用,在空间自由移动.
气体能充满它们所能达到的空间,没有一定的体积和形状.
(2)每个气体分子都在做永不停息的运动,大量气体分子频繁地发生碰撞使每个气体分子都在做杂乱无章的运动.
(3)大量气体分子的杂乱无章的热运动,在宏观上表现出一定的规律性.
①气体分子沿各个方向运动的数目是相等的.
②对于任一温度下的任何气体来说,多数气体分子的速率都在某一数值范围之内,比这一数值范围速率大的分子数和比这一数值范围速率小的分子数依次递减.速率很大和速率很小的分子数都很少.在确定温度下的某种气体的速率分布情况是确定的.
在温度升高时,多数气体分子所在的速率范围升高,而且在这一速度范围的分子数增多.
2.气体压强的产生
(1)气体压强的定义
气体作用在器壁单位面积上的压力就是气体的压强,即P=F/S.
(2)气体压强的形成原因
气体作用在器壁上的压力是由碰撞产生的,一个气体分子和器壁的碰撞时间是极其短暂的.它施于器壁的作用力是不连续的,但大量分子频繁地碰撞器壁,从宏观上看,可以认为气体对器壁的作用力是持续的、均匀的.
(3)气体压强的决定因素
①分子的平均动能与密集程度
从微观角度来看,气体分子的质量越大,速度越大,即分子的平均动能越大,每个气体分子撞一次器壁对器壁的作用力越大,而单位时间内气体分子撞击器壁的次数越多,对器壁的总压力也越大,而撞击次数又取决于单位体积内分子数(分子的密集程度)和平均动能(分子在容器中往返运动着,其平均动能越大,分子平均速率也越大,连续两次碰撞某器壁的时间间隔越短,即单位时间内撞击次数越多),所以从微观角度看,气体的压强决定于气体的平均动能和密集程度.
②气体的温度与体积
从宏观角度看,一定质量的气体的压强跟气体的体积和温度有关.对于一定质量的气体,体积的大小决定分子的密集程度,而温度的高低是分子平均动能的标志.
(4)几个问题的说明
①在一个不太高的容器中,我们可以认为各点气体的压强相等的.
②气体的压强经常通过液体的压强来反映.
③容器内气体压强的大小与气体的重力无关,这一点与液体的压强不同(液体的压强是由液体的重力造成的).这是因为一般容器内气体质量很小,且容器高度有限,所以不同高度处气体分子的密集程度几乎没有差异.所以气体的压强处处相等,即压强与重力无关.
④对于地球大气层这样的研究对象,由于不同高度处气体分子的密集程度不同,温度也有明显差异,所以不同高度差处气体的压强是不同的.这种情况下气体的压强与重力有关.
3.对气体实验定律的微观解释
(1)玻意耳定律的微观解释
①一定质量的气体,温度保持不变,从微观上看表示气体分子的总数和分子平均动能保持不变,因此气体压强只跟单位体积内的分子数有关.
②气体发生等温变化时,体积增大到原来的几倍,单位体积内的分子数就减少到原来的几分之一,压强就会减小到原来的几分之一;体积减小到原来的几分之一,单位体积内的分子数就会增加到原来的几倍,压强就会增大到原来的几倍,即气体的压强和体积的乘积保持不变.
(2)查理定律的微观解释
①一定质量的理想气体,体积保持不变时,从微观上看表示单位体积内的分子数保持不变,因此气体的压强只跟气体分子的平均动能有关.
②气体发生等容变化时,温度升高,气体分子的平均动能增大,气体压强会跟着增大;温度降低,气体分子的平均动能减小,气体压强会跟着减小.
(3)盖·吕萨克定律的微观解释
①一定质量的理想气体,压强不变时,从微观上看是单位体积内分子数的变化引起的压强变化与由分子的平均动能变化引起的压强变化相互抵消.
②气体发生等压变化时,气体体积增大,单位体积内的分子数减小,会使气体的压强减小,气体的温度升高,气体分子的平均动能增大,才能使气体的压强增大来抵消由气体体积增大而造成的气体压强的减小;相反,气体体积减小,单位体积内的分子数增多,会使气体的压强增大,只有气体的温度降低,气体分子的平均动能减小,才能使气体的压强减小来抵消由气体体积减小而造成的气体压强的增大.
4.理想气体内能及变化
理想气体,是我们在研究气体性质时所建立的理想模型,它指的是不考虑气体分子间相互作用力,这是由于气体分子间距离较远,已超过10r0,故可忽略气体分子间作用力,这样理想气体的内能就取决于分子的总数目和分子的平均动能,而分子的数目又由气体的摩尔量决定,分子的平均动能的标志是气体的温度,所以理想气体的内能就可用摩尔量和温度这两个宏观物理量来衡量了,而对于一定质量的理想气体而言,它的内能只由温度来衡量.
也就是说,对一定质量的理想气体,它的内能是否发生变化,只需看它的温度是否变化了就可以了,温度升高,内能增大;温度降低,内能减小.
理想气体做功与否,只需观察它的体积,若体积增大,则气体对外界做功;体积减小,则外界对气体做功.
根据能的转化和守恒定律,一定质量的理想气体的内能的改变量等于气体吸收的热量与外界对气体做功之和,即△E=Q+W.
问题描述:
如何证明分子的运动?
解析:
世界上一切都在运动,运动是事物存在的特性。
1.气体分子运动的特点
(1)气体分子之间的距离很大,距离大约是分子直径的10倍,因此除了相互碰撞或者跟器壁碰撞外,气体分子不受力的作用,在空间自由移动.
气体能充满它们所能达到的空间,没有一定的体积和形状.
(2)每个气体分子都在做永不停息的运动,大量气体分子频繁地发生碰撞使每个气体分子都在做杂乱无章的运动.
(3)大量气体分子的杂乱无章的热运动,在宏观上表现出一定的规律性.
①气体分子沿各个方向运动的数目是相等的.
②对于任一温度下的任何气体来说,多数气体分子的速率都在某一数值范围之内,比这一数值范围速率大的分子数和比这一数值范围速率小的分子数依次递减.速率很大和速率很小的分子数都很少.在确定温度下的某种气体的速率分布情况是确定的.
在温度升高时,多数气体分子所在的速率范围升高,而且在这一速度范围的分子数增多.
2.气体压强的产生
(1)气体压强的定义
气体作用在器壁单位面积上的压力就是气体的压强,即P=F/S.
(2)气体压强的形成原因
气体作用在器壁上的压力是由碰撞产生的,一个气体分子和器壁的碰撞时间是极其短暂的.它施于器壁的作用力是不连续的,但大量分子频繁地碰撞器壁,从宏观上看,可以认为气体对器壁的作用力是持续的、均匀的.
(3)气体压强的决定因素
①分子的平均动能与密集程度
从微观角度来看,气体分子的质量越大,速度越大,即分子的平均动能越大,每个气体分子撞一次器壁对器壁的作用力越大,而单位时间内气体分子撞击器壁的次数越多,对器壁的总压力也越大,而撞击次数又取决于单位体积内分子数(分子的密集程度)和平均动能(分子在容器中往返运动着,其平均动能越大,分子平均速率也越大,连续两次碰撞某器壁的时间间隔越短,即单位时间内撞击次数越多),所以从微观角度看,气体的压强决定于气体的平均动能和密集程度.
②气体的温度与体积
从宏观角度看,一定质量的气体的压强跟气体的体积和温度有关.对于一定质量的气体,体积的大小决定分子的密集程度,而温度的高低是分子平均动能的标志.
(4)几个问题的说明
①在一个不太高的容器中,我们可以认为各点气体的压强相等的.
②气体的压强经常通过液体的压强来反映.
③容器内气体压强的大小与气体的重力无关,这一点与液体的压强不同(液体的压强是由液体的重力造成的).这是因为一般容器内气体质量很小,且容器高度有限,所以不同高度处气体分子的密集程度几乎没有差异.所以气体的压强处处相等,即压强与重力无关.
④对于地球大气层这样的研究对象,由于不同高度处气体分子的密集程度不同,温度也有明显差异,所以不同高度差处气体的压强是不同的.这种情况下气体的压强与重力有关.
3.对气体实验定律的微观解释
(1)玻意耳定律的微观解释
①一定质量的气体,温度保持不变,从微观上看表示气体分子的总数和分子平均动能保持不变,因此气体压强只跟单位体积内的分子数有关.
②气体发生等温变化时,体积增大到原来的几倍,单位体积内的分子数就减少到原来的几分之一,压强就会减小到原来的几分之一;体积减小到原来的几分之一,单位体积内的分子数就会增加到原来的几倍,压强就会增大到原来的几倍,即气体的压强和体积的乘积保持不变.
(2)查理定律的微观解释
①一定质量的理想气体,体积保持不变时,从微观上看表示单位体积内的分子数保持不变,因此气体的压强只跟气体分子的平均动能有关.
②气体发生等容变化时,温度升高,气体分子的平均动能增大,气体压强会跟着增大;温度降低,气体分子的平均动能减小,气体压强会跟着减小.
(3)盖·吕萨克定律的微观解释
①一定质量的理想气体,压强不变时,从微观上看是单位体积内分子数的变化引起的压强变化与由分子的平均动能变化引起的压强变化相互抵消.
②气体发生等压变化时,气体体积增大,单位体积内的分子数减小,会使气体的压强减小,气体的温度升高,气体分子的平均动能增大,才能使气体的压强增大来抵消由气体体积增大而造成的气体压强的减小;相反,气体体积减小,单位体积内的分子数增多,会使气体的压强增大,只有气体的温度降低,气体分子的平均动能减小,才能使气体的压强减小来抵消由气体体积减小而造成的气体压强的增大.
4.理想气体内能及变化
理想气体,是我们在研究气体性质时所建立的理想模型,它指的是不考虑气体分子间相互作用力,这是由于气体分子间距离较远,已超过10r0,故可忽略气体分子间作用力,这样理想气体的内能就取决于分子的总数目和分子的平均动能,而分子的数目又由气体的摩尔量决定,分子的平均动能的标志是气体的温度,所以理想气体的内能就可用摩尔量和温度这两个宏观物理量来衡量了,而对于一定质量的理想气体而言,它的内能只由温度来衡量.
也就是说,对一定质量的理想气体,它的内能是否发生变化,只需看它的温度是否变化了就可以了,温度升高,内能增大;温度降低,内能减小.
理想气体做功与否,只需观察它的体积,若体积增大,则气体对外界做功;体积减小,则外界对气体做功.
根据能的转化和守恒定律,一定质量的理想气体的内能的改变量等于气体吸收的热量与外界对气体做功之和,即△E=Q+W.
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询