高中数学重要知识点详细总结(精华版)
1个回答
展开全部
1. 高中数学小知识点50个
高中数学小知识点50个 1.数学趣味小知识 简短的 20到50字左右
趣味数学小知识
数论部分:
1、没有最大的质数。欧几里得给出了优美而简单的证明。
2、哥德巴赫猜想:任何一个偶数都能表示成两个质数之和。陈景润的成果为:任何一个偶数都能表示成一个质数和不多于两个质数的乘积之和。
3、费马大定理:x的n次方+y的n次方=z的n次方,n>2时没有整数解。欧拉证明了3和4,1995年被英国数学家 安德鲁*怀尔斯 证明。
拓扑学部分:
1、多面体点面棱的关系:定点数+面数=棱数+2,笛卡尔提出,欧拉证明,也称欧拉定理。
2、欧拉定理推论:可能只有5种正多面体,正四面体,正八面体,正六面体,正二十面体,正十二面体。
3、把空间翻过来,左手系的物体就能变成右手系的,通过克莱因瓶模拟,一节很好的头脑体操,
摘自: ,相信对你的学习会有帮助的,祝你成功!答案补充 一试 全国高中数学联赛的一试竞赛大纲,完全按照全日制中学《数学教学大纲》中所规定的教学要求和内容,即高考所规定的知识范围和方法,在方法的要求上略有提高,其中概率和微积分初步不考。
二试 1、平面几何 基本要求:掌握初中数学竞赛大纲所确定的所有内容。 补充要求:面积和面积方法。
几个重要定理:梅涅劳斯定理、塞瓦定理、托勒密定理、西姆松定理。 几个重要的极值:到三角形三顶点距离之和最小的点--费马点。
到三角形三顶点距离的平方和最小的点,重心。三角形内到三边距离之积最大的点,重心。
几何不等式。 简单的等周问题。
了解下述定理: 在周长一定的n边形的 *** 中,正n边形的面积最大。 在周长一定的简单闭曲线的 *** 中,圆的面积最大。
在面积一定的n边形的 *** 。
7.高一数学知识点 总结
*这是高中数学的全部公式* 三角函数公式表 同角三角函数的基本关系式 倒数关系: 商的关系: 平方关系: tanα ·cotα=1 sinα ·cscα=1 cosα ·secα=1 sinα/cosα=tanα=secα/cscα cosα/sinα=cotα=cscα/secα sin2α+cos2α=1 1+tan2α=sec2α 1+cot2α=csc2α (六边形记忆法:图形结构“上弦中切下割,左正右余中间1”;记忆方法“对角线上两个函数的积为1;阴影三角形上两顶点的三角函数值的平方和等于下顶点的三角函数值的平方;任意一顶点的三角函数值等于相邻两个顶点的三角函数值的乘积。”
) 诱导公式(口诀:奇变偶不变,符号看象限。) sin(-α)=-sinα cos(-α)=cosα tan(-α)=-tanα cot(-α)=-cotα sin(π/2-α)=cosα cos(π/2-α)=sinα tan(π/2-α)=cotα cot(π/2-α)=tanα sin(π/2+α)=cosα cos(π/2+α)=-sinα tan(π/2+α)=-cotα cot(π/2+α)=-tanα sin(π-α)=sinα cos(π-α)=-cosα tan(π-α)=-tanα cot(π-α)=-cotα sin(π+α)=-sinα cos(π+α)=-cosα tan(π+α)=tanα cot(π+α)=cotα sin(3π/2-α)=-cosα cos(3π/2-α)=-sinα tan(3π/2-α)=cotα cot(3π/2-α)=tanα sin(3π/2+α)=-cosα cos(3π/2+α)=sinα tan(3π/2+α)=-cotα cot(3π/2+α)=-tanα sin(2π-α)=-sinα cos(2π-α)=cosα tan(2π-α)=-tanα cot(2π-α)=-cotα sin(2kπ+α)=sinα cos(2kπ+α)=cosα tan(2kπ+α)=tanα cot(2kπ+α)=cotα (其中k∈Z) 两角和与差的三角函数公式 万能公式 sin(α+β)=sinαcosβ+cosαsinβ sin(α-β)=sinαcosβ-cosαsinβ cos(α+β)=cosαcosβ-sinαsinβ cos(α-β)=cosαcosβ+sinαsinβ tanα+tanβ tan(α+β)=—————— 1-tanα ·tanβ tanα-tanβ tan(α-β)=—————— 1+tanα ·tanβ 2tan(α/2) sinα=—————— 1+tan2(α/2) 1-tan2(α/2) cosα=—————— 1+tan2(α/2) 2tan(α/2) tanα=—————— 1-tan2(α/2) 半角的正弦、余弦和正切公式 三角函数的降幂公式 二倍角的正弦、余弦和正切公式 三倍角的正弦、余弦和正切公式 sin2α=2sinαcosα cos2α=cos2α-sin2α=2cos2α-1=1-2sin2α 2tanα tan2α=————— 1-tan2α sin3α=3sinα-4sin3α cos3α=4cos3α-3cosα 3tanα-tan3α tan3α=—————— 1-3tan2α 三角函数的和差化积公式 三角函数的积化和差公式 α+β α-β sinα+sinβ=2sin———·cos——— 2 2 α+β α-β sinα-sinβ=2cos———·sin——— 2 2 α+β α-β cosα+cosβ=2cos———·cos——— 2 2 α+β α-β cosα-cosβ=-2sin———·sin——— 2 2 1 sinα ·cosβ=-[sin(α+β)+sin(α-β)] 2 1 cosα ·sinβ=-[sin(α+β)-sin(α-β)] 2 1 cosα ·cosβ=-[cos(α+β)+cos(α-β)] 2 1 sinα ·sinβ=— -[cos(α+β)-cos(α-β)] 2 化asinα ±bcosα为一个角的一个三角函数的形式(辅助角的三角函数的公式 *** 、函数 *** 简单逻辑 任一x∈A x∈B,记作A B A B,B A A=B A B={x|x∈A,且x∈B} A B={x|x∈A,或x∈B} card(A B)=card(A)+card(B)-card(A B) (1)命题 原命题 若p则q 逆命题 若q则p 否命题 若 p则 q 逆否命题 若 q,则 p (2)四种命题的关系 (3)A B,A是B成立的充分条件 B A,A是B成立的必要条件 A B,A是B成立的充要条件 函数的性质 指数和对数 (1)定义域、值域、对应法则 (2)单调性 对于任意x1,x2∈D 若x1f(x2),称f(x)在D上是减函数 (3)奇偶性 对于函数f(x)的定义域内的任一x,若f(-x)=f(x),称f(x)是偶函数 若f(-x)=-f(x),称f(x)是奇函数 (4)周期性 对于函数f(x)的定义域内的任一x,若存在常数T,使得f(x+T)=f(x),则称f(x)是周期函数 (1)分数指数幂 正分数指数幂的意义是 负分数指数幂的意义是 (2)对数的性质和运算法则 loga(MN)=logaM+logaN logaMn=nlogaM(n∈R) 指数函数 对数函数 (1)y=ax(a>0,a≠1)叫指数函数 (2)x∈R,y>0 图象经过(0,1) a>1时,x>0,y>1;x0,01 a> 1时,y=ax是增函数 00,a≠1)叫对数函数 (2)x>0,y∈R 图象经过(1,0) a>1时,x>1,y>0;01,y0 a>1时,y=logax是增函数 00,a≠1) 同底型 logaf(x)=logag(x) f(x)=g(x)>0(a>0,a≠1) 换元型 f(ax)=0或f (logax)=0 数列 数列的基本概念 等差数列 (1)数列的通项公式an=f(n) (2)数列的递推公式 (3)数列的通项公式与前n项和的关系 an+1-an=d an=a1+(n-1)d a,A,b成等差 2A=a+b m+n=k+l am+an=ak+al 等比数列 常用求和公式 an=a1qn_1 a,G,b成等比 G2=ab m+n=k+l aman=akal 不等式 不等式的基本性质 重要不等式 a>b bb,b>c a>c a>b a+c>b+c a+b>c a>c-b a>b,c>d a+c>b+d a>b,c>0 ac>bc a>b,cb>0,c>d>0 acb>0 dn>bn(n∈Z,n>1) a>b>0 > (n∈Z,n>1) (a-b)2≥0 a,b∈R a2+b2≥2ab |a|-|b|≤|a±b|≤|a|+|b| 证明不等式的基本方法 比较法 (1)要证明不等式a>b(或a0(或a-b0,要证a>b,只需证明 , 要证a0,b2=c2-a2) 离心率 准线方程 焦半径|MF1|=ex0+a,|MF2|=ex0-a 抛物线y2=2px(p>0) 焦点F 准线方程 坐标轴的平移 这里(h,k)是新坐标系的原点在原坐标系中的坐标。
1. *** 元素具有①确定性②互异性③无序性 2. *** 表示方法①列举法 ②描述法 ③韦恩图 ④数轴法 3. *** 的运算 ⑴ A∩(B∪C)=(A∩B)∪(A∩C) ⑵ Cu(A∩B)=CuA∪CuB Cu(A∪B)=CuA∩CuB 4. *** 的性质 ⑴n元 *** 的子集数:2n 真子集数:2n-1;非空真子集数:2n-2 高中数学概念总结 一、函数 1、若 *** A中有n 个元素,则 *** A的所有不同的子集个数为 ,所有非空真子集的个数是 。 二次函数 的图象的对称轴方程是 ,顶。
高中数学小知识点50个 1.数学趣味小知识 简短的 20到50字左右
趣味数学小知识
数论部分:
1、没有最大的质数。欧几里得给出了优美而简单的证明。
2、哥德巴赫猜想:任何一个偶数都能表示成两个质数之和。陈景润的成果为:任何一个偶数都能表示成一个质数和不多于两个质数的乘积之和。
3、费马大定理:x的n次方+y的n次方=z的n次方,n>2时没有整数解。欧拉证明了3和4,1995年被英国数学家 安德鲁*怀尔斯 证明。
拓扑学部分:
1、多面体点面棱的关系:定点数+面数=棱数+2,笛卡尔提出,欧拉证明,也称欧拉定理。
2、欧拉定理推论:可能只有5种正多面体,正四面体,正八面体,正六面体,正二十面体,正十二面体。
3、把空间翻过来,左手系的物体就能变成右手系的,通过克莱因瓶模拟,一节很好的头脑体操,
摘自: ,相信对你的学习会有帮助的,祝你成功!答案补充 一试 全国高中数学联赛的一试竞赛大纲,完全按照全日制中学《数学教学大纲》中所规定的教学要求和内容,即高考所规定的知识范围和方法,在方法的要求上略有提高,其中概率和微积分初步不考。
二试 1、平面几何 基本要求:掌握初中数学竞赛大纲所确定的所有内容。 补充要求:面积和面积方法。
几个重要定理:梅涅劳斯定理、塞瓦定理、托勒密定理、西姆松定理。 几个重要的极值:到三角形三顶点距离之和最小的点--费马点。
到三角形三顶点距离的平方和最小的点,重心。三角形内到三边距离之积最大的点,重心。
几何不等式。 简单的等周问题。
了解下述定理: 在周长一定的n边形的 *** 中,正n边形的面积最大。 在周长一定的简单闭曲线的 *** 中,圆的面积最大。
在面积一定的n边形的 *** 。
7.高一数学知识点 总结
*这是高中数学的全部公式* 三角函数公式表 同角三角函数的基本关系式 倒数关系: 商的关系: 平方关系: tanα ·cotα=1 sinα ·cscα=1 cosα ·secα=1 sinα/cosα=tanα=secα/cscα cosα/sinα=cotα=cscα/secα sin2α+cos2α=1 1+tan2α=sec2α 1+cot2α=csc2α (六边形记忆法:图形结构“上弦中切下割,左正右余中间1”;记忆方法“对角线上两个函数的积为1;阴影三角形上两顶点的三角函数值的平方和等于下顶点的三角函数值的平方;任意一顶点的三角函数值等于相邻两个顶点的三角函数值的乘积。”
) 诱导公式(口诀:奇变偶不变,符号看象限。) sin(-α)=-sinα cos(-α)=cosα tan(-α)=-tanα cot(-α)=-cotα sin(π/2-α)=cosα cos(π/2-α)=sinα tan(π/2-α)=cotα cot(π/2-α)=tanα sin(π/2+α)=cosα cos(π/2+α)=-sinα tan(π/2+α)=-cotα cot(π/2+α)=-tanα sin(π-α)=sinα cos(π-α)=-cosα tan(π-α)=-tanα cot(π-α)=-cotα sin(π+α)=-sinα cos(π+α)=-cosα tan(π+α)=tanα cot(π+α)=cotα sin(3π/2-α)=-cosα cos(3π/2-α)=-sinα tan(3π/2-α)=cotα cot(3π/2-α)=tanα sin(3π/2+α)=-cosα cos(3π/2+α)=sinα tan(3π/2+α)=-cotα cot(3π/2+α)=-tanα sin(2π-α)=-sinα cos(2π-α)=cosα tan(2π-α)=-tanα cot(2π-α)=-cotα sin(2kπ+α)=sinα cos(2kπ+α)=cosα tan(2kπ+α)=tanα cot(2kπ+α)=cotα (其中k∈Z) 两角和与差的三角函数公式 万能公式 sin(α+β)=sinαcosβ+cosαsinβ sin(α-β)=sinαcosβ-cosαsinβ cos(α+β)=cosαcosβ-sinαsinβ cos(α-β)=cosαcosβ+sinαsinβ tanα+tanβ tan(α+β)=—————— 1-tanα ·tanβ tanα-tanβ tan(α-β)=—————— 1+tanα ·tanβ 2tan(α/2) sinα=—————— 1+tan2(α/2) 1-tan2(α/2) cosα=—————— 1+tan2(α/2) 2tan(α/2) tanα=—————— 1-tan2(α/2) 半角的正弦、余弦和正切公式 三角函数的降幂公式 二倍角的正弦、余弦和正切公式 三倍角的正弦、余弦和正切公式 sin2α=2sinαcosα cos2α=cos2α-sin2α=2cos2α-1=1-2sin2α 2tanα tan2α=————— 1-tan2α sin3α=3sinα-4sin3α cos3α=4cos3α-3cosα 3tanα-tan3α tan3α=—————— 1-3tan2α 三角函数的和差化积公式 三角函数的积化和差公式 α+β α-β sinα+sinβ=2sin———·cos——— 2 2 α+β α-β sinα-sinβ=2cos———·sin——— 2 2 α+β α-β cosα+cosβ=2cos———·cos——— 2 2 α+β α-β cosα-cosβ=-2sin———·sin——— 2 2 1 sinα ·cosβ=-[sin(α+β)+sin(α-β)] 2 1 cosα ·sinβ=-[sin(α+β)-sin(α-β)] 2 1 cosα ·cosβ=-[cos(α+β)+cos(α-β)] 2 1 sinα ·sinβ=— -[cos(α+β)-cos(α-β)] 2 化asinα ±bcosα为一个角的一个三角函数的形式(辅助角的三角函数的公式 *** 、函数 *** 简单逻辑 任一x∈A x∈B,记作A B A B,B A A=B A B={x|x∈A,且x∈B} A B={x|x∈A,或x∈B} card(A B)=card(A)+card(B)-card(A B) (1)命题 原命题 若p则q 逆命题 若q则p 否命题 若 p则 q 逆否命题 若 q,则 p (2)四种命题的关系 (3)A B,A是B成立的充分条件 B A,A是B成立的必要条件 A B,A是B成立的充要条件 函数的性质 指数和对数 (1)定义域、值域、对应法则 (2)单调性 对于任意x1,x2∈D 若x1f(x2),称f(x)在D上是减函数 (3)奇偶性 对于函数f(x)的定义域内的任一x,若f(-x)=f(x),称f(x)是偶函数 若f(-x)=-f(x),称f(x)是奇函数 (4)周期性 对于函数f(x)的定义域内的任一x,若存在常数T,使得f(x+T)=f(x),则称f(x)是周期函数 (1)分数指数幂 正分数指数幂的意义是 负分数指数幂的意义是 (2)对数的性质和运算法则 loga(MN)=logaM+logaN logaMn=nlogaM(n∈R) 指数函数 对数函数 (1)y=ax(a>0,a≠1)叫指数函数 (2)x∈R,y>0 图象经过(0,1) a>1时,x>0,y>1;x0,01 a> 1时,y=ax是增函数 00,a≠1)叫对数函数 (2)x>0,y∈R 图象经过(1,0) a>1时,x>1,y>0;01,y0 a>1时,y=logax是增函数 00,a≠1) 同底型 logaf(x)=logag(x) f(x)=g(x)>0(a>0,a≠1) 换元型 f(ax)=0或f (logax)=0 数列 数列的基本概念 等差数列 (1)数列的通项公式an=f(n) (2)数列的递推公式 (3)数列的通项公式与前n项和的关系 an+1-an=d an=a1+(n-1)d a,A,b成等差 2A=a+b m+n=k+l am+an=ak+al 等比数列 常用求和公式 an=a1qn_1 a,G,b成等比 G2=ab m+n=k+l aman=akal 不等式 不等式的基本性质 重要不等式 a>b bb,b>c a>c a>b a+c>b+c a+b>c a>c-b a>b,c>d a+c>b+d a>b,c>0 ac>bc a>b,cb>0,c>d>0 acb>0 dn>bn(n∈Z,n>1) a>b>0 > (n∈Z,n>1) (a-b)2≥0 a,b∈R a2+b2≥2ab |a|-|b|≤|a±b|≤|a|+|b| 证明不等式的基本方法 比较法 (1)要证明不等式a>b(或a0(或a-b0,要证a>b,只需证明 , 要证a0,b2=c2-a2) 离心率 准线方程 焦半径|MF1|=ex0+a,|MF2|=ex0-a 抛物线y2=2px(p>0) 焦点F 准线方程 坐标轴的平移 这里(h,k)是新坐标系的原点在原坐标系中的坐标。
1. *** 元素具有①确定性②互异性③无序性 2. *** 表示方法①列举法 ②描述法 ③韦恩图 ④数轴法 3. *** 的运算 ⑴ A∩(B∪C)=(A∩B)∪(A∩C) ⑵ Cu(A∩B)=CuA∪CuB Cu(A∪B)=CuA∩CuB 4. *** 的性质 ⑴n元 *** 的子集数:2n 真子集数:2n-1;非空真子集数:2n-2 高中数学概念总结 一、函数 1、若 *** A中有n 个元素,则 *** A的所有不同的子集个数为 ,所有非空真子集的个数是 。 二次函数 的图象的对称轴方程是 ,顶。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询