如何理解最大线性无关向量组和秩的关系?

 我来答
ss22433
高粉答主

2022-08-23 · 醉心答题,欢迎关注
知道小有建树答主
回答量:645
采纳率:100%
帮助的人:19万
展开全部

线性无关和秩的关系是:如果一个矩阵行向量线性无关,那么这个矩阵就是满秩的,也就是秩等于行数或者列数,对于一个向量组来说,向量组线性无关的充分必要条件是这个向量组的秩等于向量个数。

如果齐次线性方程组Ax=0有k个线性无关的解,那么基础解系所含向量的个数n-r(A)>=k,即有 r(A)。

扩展资料:

计算矩阵的秩的一个有用应用是计算线性方程组解的数目。如果系数矩阵的秩等于增广矩阵的秩,则方程组有解。在这种情况下,如果它的秩等于未知数的数目,则方程有唯一解。如果秩小于未知数个数,则有无穷多个解。

m×n矩阵的秩最大为m和n中的较小者。有尽可能大的秩的矩阵被称为有满秩,类似的,否则矩阵是秩不足的。在线性代数中,一个矩阵A的列秩是A的线性无关的纵列的极大数目。

参考资料:百度百科-最大线性无关向量

已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式