二元二次方程怎么解
二元二次方程解法:
1、代入法解二元一次方程组的步骤:
①选取一个系数较简单的二元一次方程变形,用含有一个未知数的代数式表示另一个未知数;
②将变形后的方程代入另一个方程中,消去一个未知数,得到一个一元一次方程(在代入时,要注意不能代入原方程,只能代入另一个没有变形的方程中,以达到消元的目的.);
③解这个一元一次方程,求出未知数的值;
④将求得的未知数的值代入①中变形后的方程中,求出另一个未知数的值;
⑤用“{”联立两个未知数的值,就是方程组的解;
⑥最后检验求得的结果是否正确。
2、加减法解二元一次方程组的步骤:
①利用等式的基本性质,将原方程组中某个未知数的系数化成相等或相反数的形式;
②再利用等式的基本性质将变形后的两个方程相加或相减,消去一个未知数,得到一个一元一次方程(一定要将方程的两边都乘以同一个数,切忌只乘以一边,然后若未知数系数相等则用减法,若未知数系数互为相反数,则用加法);
③解这个一元一次方程,求出未知数的值;
④将求得的未知数的值代入原方程组中的任何一个方程中,求出另一个未知数的值;
⑤用“{”联立两个未知数的值,就是方程组的解;
⑥最后检验求得的结果是否正。
扩展资料:
特殊情况求解方式:
1、一个一次方程的二元二次方程组:
由一个二元一次方程和一个二元二次方程组成的方程组,一般用代入法求解,即将方程组中的二元一次方程用含有一个未知数的代数式表示另一个未知数,然后代入二元二次方程中,从而化“二元”为“一元”,如此便得到一个一元二次方程。
2、不含一次项:
不含有一次项的二元二次方程。通常解法为:尝试将常数项通过加减消元消去。
3、二次项系数成比例:
通常解法为:通过加减消元消除二次项。
4、对称方程组:
将方程组中各方程的未知数互换后与原方程一样,则此方程组为对称方程组。解的特性:两个未知数可以互换。
5、轮换方程组:
将方程组中各方程的未知数互换后,各方程变化,但是整个方程组不变。一般来说,将两式相减即可因式分解。