数列求和裂项相消法
裂项相消法是数列求和中第二大求和方法,其使用频率仅此于错位相减法。
裂项相消法是高中数列求和的方法之一,它是分解与组合思想在数列求和中的具体应用. 裂项相消法的实质是将数列中的每项(通项)分解,然后重新组合,使之能消去一些项,最终达到求和的目的。
数列求和的方法引入裂项相消法,首先讲解了裂项相消法求和的核心内容:如何裂项与消项,通过讲解例题使学生理解和掌握,然后通过变式训练,加强巩固,并且重点说明消项的方法和技巧,最后归纳总结常见的裂项相消法求和的公式,让学生更系统地掌握裂项的方法。
总结裂项相消类型:
裂项相消法的概念不难,过程也简单,其难点主要在于如何判断来使用裂项相消法。裂项相消法的八大类型:等差型、无理行、指数型、对数型。三角函数型、阶乘和组合数公式型、抽象型、混合型。
裂项相消法是将数列中的每项(通项)分解,然后重新组合,使之能消去一些项,最终达到求和的目的。比如1/[n(n+1)]=(1/n)- [1/(n+1)]、1/[(2n-1)(2n+1)]=1/2[1/(2n-1)-1/(2n+1)]。
此类变形的特点是将原数列每一项拆为两项之后,其中中间的大部分项都互相抵消了。只剩下有限的几项。余下的项具有如下的特点,余下的项前后的位置前后是对称的。余下的项前后的正负性是相反。
所谓裂项相消,“裂项”很关键,但是重点还是在“相消”上!这一点大家需特别注意!