什么是插值法
1个回答
展开全部
插值法又称“内插法”。利用函数f白)在某区间中若干点的函数值,作出适当的特定函数,在这些点上取已知值,在区间的其他点上用这特定函数的值作为函数f余)的近似值,这力一法称为插值法。如果这特定函数是多项式,就称它为插值多项式。
插值法就是根据已有的点,如:(x1,y1),(x2,y2),(x3,y3)^^^(xn,yn)
然后由这些已知的点构造一个插值函数来逼近原函数。将要求的点的横坐标x代入函数,能得到所求的函数值。
公式就是:Y=Y1+(Y2-Y1)×(X-X1)/(X2-X1)。通俗地讲,线性内插法就是利用相似三角形的原理,来计算内插点的数据。
内插法又称插值法。根据未知函数f(x)在某区间内若干点的函数值,作出在该若干点的函数值与f(x)值相等的特定函数来近似原函数f(x),进而可用此特定函数算出该区间内其他各点的原函数f(x)的近似值,这种方法,称为内插法。
按特定函数的性质分,有线性内插、非线性内插等;按引数(自变量)个数分,有单内插、双内插和三内插等。
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询