解一元二次不等式的步骤
展开全部
解一元二次不等式的步骤如下:
1、把二次项系数变成正的;画数轴,在数轴上从小到大依次标出所有根;
2、从右上角开始,一上一下依次穿过不等式的根,奇过偶不过(即遇到含x的项是奇次幂就穿过,偶次幂就跨过);
3、注意看看题中不等号有没有等号,没有的话还要注意舍去使不等式为0的根。
数轴穿根:用穿根法解高次不等式时,就是先把不等式一端化为零,再对另一端分解因式,并求出它的零点,把这些零点标在数轴上,再用一条光滑的曲线,从x轴的右端上方起,依次穿过这些零点,大于零的不等式的解对应这曲线在X轴上方部分的实数X的值的集合,小于零的则相反。
这种方法叫做序轴穿根法,又叫“穿根法”。口诀是“从右到左,从上到下,奇穿偶不穿。”注:该方法适用于所有的不等式。
在数轴上依次标出这些点。还是从最右边的一点3的右上方引出一条曲线,经过点3,在1、3之间类似于一个开口向上的抛物线,经过点1;继续向点1的左上方延伸,这条曲线在点0、1之间类似于一条开口向下的曲线,经过点0;继续向0的左下方延伸,在0、-2之间类似于一条开口向上的抛物线,经过点-2;继续向点-2的左上方无限延伸。
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询