如图1,圆o中AB是直径,C是圆o上一点,角ABC等于45度
1个回答
展开全部
然后呢 ,怎么就半薯销闹个题目
是不是这个,如果是的,
(1)证明:∵数罩AB是直径,
∴∠BCA=90°,
而等腰直角三角形DCE中∠DCE是直角,
∴∠BCA+∠DCE=90°+90°=180°,
∴B、斗亩C、E三点共线;
(2)连接BD,AE,ON,延长BD交AE于F,如图,
∵CB=CA,CD=CE,
∴Rt△BCD≌Rt△ACE,
∴BD=AE,∠EBD=∠CAE,
∴∠CAE+∠ADF=∠CBD+∠BDC=90°,即BD⊥AE,
又∵M是线段BE的中点,N是线段AD的中点,而O为AB的中点,
∴ON= BD,OM= AE,ON∥BD,AE∥OM;
∴ON=OM,ON⊥OM,即△ONM为等腰直角三角形,
∴MN= OM;
(3)成立.理由如下:
和(2)一样,易证得Rt△BCD1≌Rt△ACE1,同里可证BD1⊥AE1,△ON1M1为等腰直角三角形,
从而有M1N1= OM1
.
是不是这个,如果是的,
(1)证明:∵数罩AB是直径,
∴∠BCA=90°,
而等腰直角三角形DCE中∠DCE是直角,
∴∠BCA+∠DCE=90°+90°=180°,
∴B、斗亩C、E三点共线;
(2)连接BD,AE,ON,延长BD交AE于F,如图,
∵CB=CA,CD=CE,
∴Rt△BCD≌Rt△ACE,
∴BD=AE,∠EBD=∠CAE,
∴∠CAE+∠ADF=∠CBD+∠BDC=90°,即BD⊥AE,
又∵M是线段BE的中点,N是线段AD的中点,而O为AB的中点,
∴ON= BD,OM= AE,ON∥BD,AE∥OM;
∴ON=OM,ON⊥OM,即△ONM为等腰直角三角形,
∴MN= OM;
(3)成立.理由如下:
和(2)一样,易证得Rt△BCD1≌Rt△ACE1,同里可证BD1⊥AE1,△ON1M1为等腰直角三角形,
从而有M1N1= OM1
.
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询