已知BE,CF是△ABC的中线且相交于点G,求证:BG=2EG.
1个回答
展开全部
已知BE,CF是△ABC的中线且相交于点G
所以说,交点就是三角形的重心.
证明:
连结AO并延长,交BC于E,连结DE
因为CD是AB边上的中线,点O是三角形ABC的重心
所以AE是BC边上的中线
所以AD=DB,CE=EB
所以DE是三角形ABC的中位线
所以ED‖AC,ED=1/2AC,即ED/AC=1/2
所以△OED∽△OAC
所以OD/OC=ED/AC=1/2
即OC=2OD
所以说,交点就是三角形的重心.
证明:
连结AO并延长,交BC于E,连结DE
因为CD是AB边上的中线,点O是三角形ABC的重心
所以AE是BC边上的中线
所以AD=DB,CE=EB
所以DE是三角形ABC的中位线
所以ED‖AC,ED=1/2AC,即ED/AC=1/2
所以△OED∽△OAC
所以OD/OC=ED/AC=1/2
即OC=2OD
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询