等比数列怎么求和?
2个回答
展开全部
1、等比数列是指从第二项起,每一项与它的前一项的比值等于同一个常数的一种数列。
举例:
数列:2、4、8、16、······
每一项与前一项的比值:4÷2=8÷4=16÷8=2,所以这个数列是等比数列,而它的公比就是2。
2、等比数列的求和公示如下:
其中a1为首项,q为等比数列公比,Sn为等比数列前n项和。
还是以数列:2、4、8、16、······为例,a1=2,公比q=2,
假如是求前四项的和,即:Sn=2×(1-2^4)÷(1-2)=30,与2+4+8+16=30 相符。
扩展资料
等比数列在生活中也是常常运用的。
如:银行有一种支付利息的方式---复利。
即把前一期的利息和本金加在一起算作本金,再计算下一期的利息,也就是人们通常说的利滚利。
按照复利计算本利和的公式:本利和=本金×(1+利率)^存期
展开全部
等比数列和等差数列的区别在于数列中相邻两项之间不是相差一个常数值,而是相差一个常数倍,比如(1)式,相邻两项之间是 2 倍的关系,2 便是数列中的公比。我们知道了等比数列的首项 a1 ,知道了公比 q ,那我们就可以通过下面这个公式得到数列中的任何一项:指的是第项
an=a1∗qn−1(n 指的是第 n 项)
关于这么一个等比数列的求和公式该怎么计算呢?这一次我们需要用到数列计算当中经常用到的一个手法:错位相减法。 所谓错位相减即指两个等式相减的时候,其中一个等式的第 m 项减去的是另一个等式的第 n 项(m≠n)。我们错开位置相减,目的是为了更方便地计算得到我们想要的结果。为了更清楚的理解这个方法,我们直接看下面的推导过程:
上面(2)和(3)两个公式中,相同的项减去后相互抵消,(2)式右边最终留下了 a1 ,(3)式右边留下了 a1∗qn ,(3) - (2) 整理后得:
Sn=a1∗(qn−1)q−1(4)
公式(4)便是我们最终得到的等比数列求和公
an=a1∗qn−1(n 指的是第 n 项)
关于这么一个等比数列的求和公式该怎么计算呢?这一次我们需要用到数列计算当中经常用到的一个手法:错位相减法。 所谓错位相减即指两个等式相减的时候,其中一个等式的第 m 项减去的是另一个等式的第 n 项(m≠n)。我们错开位置相减,目的是为了更方便地计算得到我们想要的结果。为了更清楚的理解这个方法,我们直接看下面的推导过程:
上面(2)和(3)两个公式中,相同的项减去后相互抵消,(2)式右边最终留下了 a1 ,(3)式右边留下了 a1∗qn ,(3) - (2) 整理后得:
Sn=a1∗(qn−1)q−1(4)
公式(4)便是我们最终得到的等比数列求和公
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询