微积分.∫√(4 x^3 + x^4) dx 怎么积分! 积分符号后面的是根号
1个回答
展开全部
∫√(4x^3+x^4)dx=∫x√(x^2+4x)dx=∫x√[(x+2)^2-4]dx 令x+2=2secU则x=2secU-2 dx=2secUtanUdU(即利用三角换元法) 所以原式=∫(2secU-2)*2tanU*2tanUsecUdU=8∫(secU-1)secU(tanU)^2dU=8∫(secU)^2-secUdsecU=8/3(secU)^3-4(secU)^2+C 再将secU=(x+2)/2带入得 原式=(x+2)^3/3—(x+2)^2 + C
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询