全等三角形的题目及答案
展开全部
如图,在△ABC中,D、E分别是AB、AC上的点,BE、CD交于点F,∠ABE=∠ACD,AE=AD,求证:DF=EF先考虑三角形ABE和三角形ACD,角A为公共角,∠ABE=∠ACD,AE=AD,
故三角形ABE和三角形ACD全等,所以AB=AC,∠ADC=∠AEB,
接下来DB=AB-AD,EC=AC-AE,所以DB=EC,
类似的,∠BDF=180-∠ADC,∠BEC=180-∠AEB,故∠BDC=∠BEC
再加上,∠ABE=∠ACD,所以三角形BDF和三角形CEF全等,DF=DE
故三角形ABE和三角形ACD全等,所以AB=AC,∠ADC=∠AEB,
接下来DB=AB-AD,EC=AC-AE,所以DB=EC,
类似的,∠BDF=180-∠ADC,∠BEC=180-∠AEB,故∠BDC=∠BEC
再加上,∠ABE=∠ACD,所以三角形BDF和三角形CEF全等,DF=DE
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询