整数的概念是什么
整数(integer)就是像-3,-2,-1,0,1,2,3,10等这样的数。
整数的全体构成整数集,整数集是一个数环。在整数系中,零和正整数统称为自然数。-1、-2、-3、?、-n、?(n为非零自然数)为负整数。则正整数、零与负整数构成整数系。
1920年,已引入“左模”,“右模”的概念。1921年写出的《整环的理想理论》是交换代数发展的里程碑。其中,诺特在引入整数环概念的时候(整数集本身也是一个数环),她是德国人,德语中的整数叫做Zahlen,于是当时她将整数环记作Z。
扩展资料
正整数、零与负整数构成整数系。一个给定的整数n可以是负数(n∈Z-),非负数(n∈Z*),零(n=0)或正数(n∈Z+)。如果不加特殊说明,我们所涉及的数都是整数,所采用的字母也表示整数。
中国最早引进了负数。《九章算术.方程》中论述的“正负数”,就是 整数的加减法。减法的需要也促进了负整数的引入。减法运算可看作求解方程a - b=c。
设正整数a,b之积是一个正整数的k次方幂(k≥2),若(a,b)=1,则a,b都是整数的k次方幂。一般地,设正整数a,b,c??之积是一个正整数的k次方幂(k≥2)。
数学可以分成两大类,一类叫纯粹数学,一类叫应用数学。纯粹数学也叫基础数学,专门研究数学本身的内部规律。中小学课本里介绍的代数、几何、微积分、概率论知识,都属于纯粹数学。
纯粹数学的一个显著特点,就是暂时撇开具体内容,以纯粹形式研究事物的数量关系和空间形式。