拉格朗日中值定理是什么?
定理内容:
若函数f(x)在区间[a,b]满足以下条件:
(1)在[a,b]连续
(2)在(a,b)可导
则在(a,b)中至少存在一点f'(c)=[f(b)-f(a)]/(b-a) a<c<b,使或f(b)-f(a)=f'(c)(b-a) 成立,其中a<c<b
证明: 把定理里面的c换成x再不定积分得原函数f(x)={[f(b)-f(a)]/(b-a)}x.
做辅助函数G(x)=f(x)-{[f(b)-f(a)]/(b-a)}x.
易证明此函数在该区间满足条件:
1.G(a)=G(b);
2.G(x)在[a,b]连续;
3.G(x)在(a,b)可导.
此即罗尔定理条件,由罗尔定理条件即证
扩展资料:
定理表述
如果函数f(x)满足:
(1)在闭区间[a,b]上连续;
(2)在开区间(a,b)内可导;
我们知道函数的微分 是函数的增量Δy的近似表达式,一般情况下只有当|Δx|很小的时候,dy和Δy之间的近似度才会提高;而有限增量公式却给出了当自变量x取得有限增量Δx(|Δx|不一定很小)时,函数增量Δy的准确表达式,这就是该公式的价值所在。
辅助函数法:
可得 又因为 在 上连续,在开区间 内可导,所以根据罗尔定理可得必有一点 使得 由此可得 变形得 定理证毕。
参考资料:百度百科-拉格朗日中值定理