log 的计算方法

请详细列出关于log、lg的计算方法... 请详细列出关于log、lg的计算方法 展开
 我来答
百度网友de73cb2
推荐于2019-09-20 · TA获得超过5万个赞
知道答主
回答量:52
采纳率:100%
帮助的人:1.9万
展开全部

1、a^(log(a)(b))=b

2、log(a)(MN)=log(a)(M)+log(a)(N)

3、log(a)(M÷N)=log(a)(M)-log(a)(N)

4、log(a)(M^n)=nlog(a)(M)

5、lgM=log(10)(M)

扩展资料:

在数学中,对数是对求幂的逆运算,正如除法是乘法的倒数,反之亦然。 这意味着一个数字的对数是必须产生另一个固定数字(基数)的指数。

如果  ,即a的x次方等于N(a>0,且a≠1),那么数x叫做以a为底N的对数(logarithm),记作

 。其中,a叫做对数的底数,N叫做真数,x叫做“以a为底N的对数”。

1、特别地,我们称以10为底的对数叫做常用对数(common logarithm),并记为lg。

2、称以无理数e(e=2.71828...)为底的对数称为自然对数(natural logarithm),并记为ln。

对数函数基本性质

1、过定点  ,即x=1时,y=0。

2、当  时,在  上是减函数;当  时,在  上是增函数。

参考资料来源:百度百科-对数

蒓潴
推荐于2017-05-15 · TA获得超过1658个赞
知道小有建树答主
回答量:695
采纳率:0%
帮助的人:622万
展开全部
1、a^(log(a)(b))=b
2、log(a)(MN)=log(a)(M)+log(a)(N);
3、log(a)(M÷N)=log(a)(M)-log(a)(N);
4、log(a)(M^n)=nlog(a)(M)

推导
1、因为n=log(a)(b),代入则a^n=b,即a^(log(a)(b))=b。

2、MN=M×N
由基本性质1(换掉M和N)
a^[log(a)(MN)] = a^[log(a)(M)]×a^[log(a)(N)]
由指数的性质
a^[log(a)(MN)] = a^{[log(a)(M)] + [log(a)(N)]}
又因为指数函数是单调函数,所以
log(a)(MN) = log(a)(M) + log(a)(N)

3、与(2)类似处理
MN=M÷N
由基本性质1(换掉M和N)
a^[log(a)(M÷N)] = a^[log(a)(M)]÷a^[log(a)(N)]
由指数的性质
a^[log(a)(M÷N)] = a^{[log(a)(M)] - [log(a)(N)]}
又因为指数函数是单调函数,所以
log(a)(M÷N) = log(a)(M) - log(a)(N)

4、与(2)类似处理
M^n=M^n
由基本性质1(换掉M)
a^[log(a)(M^n)] = {a^[log(a)(M)]}^n
由指数的性质
a^[log(a)(M^n)] = a^{[log(a)(M)]*n}
又因为指数函数是单调函数,所以
log(a)(M^n)=nlog(a)(M)
基本性质4推广
log(a^n)(b^m)=m/n*[log(a)(b)]
推导如下:
由换底公式(换底公式见下面)[lnx是log(e)(x)e称作自然对数的底] log(a^n)(b^m)=ln(a^n)÷ln(b^n)
由基本性质4可得
log(a^n)(b^m) = [n×ln(a)]÷[m×ln(b)] = (m÷n)×{[ln(a)]÷[ln(b)]}
再由换底公式
log(a^n)(b^m)=m÷n×[log(a)(b)] --------------------------------------------(性质及推导 完)

参考资料: 百度百科

本回答被网友采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
秒懂百科
2020-01-01 · TA获得超过5.9万个赞
知道大有可为答主
回答量:25.3万
采纳率:88%
帮助的人:1.2亿
展开全部
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
介翼经思美
2020-01-19 · TA获得超过1171个赞
知道小有建树答主
回答量:1489
采纳率:100%
帮助的人:6.5万
展开全部
这能等于
log
x^(n^2)
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
箕农登雅柔
2019-01-26 · TA获得超过3800个赞
知道小有建树答主
回答量:3086
采纳率:32%
帮助的人:213万
展开全部
n+2=log2[2
^(n+2)]
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 更多回答(3)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式