5个回答
展开全部
1、a^(log(a)(b))=b
2、log(a)(MN)=log(a)(M)+log(a)(N)
3、log(a)(M÷N)=log(a)(M)-log(a)(N)
4、log(a)(M^n)=nlog(a)(M)
5、lgM=log(10)(M)
扩展资料:
在数学中,对数是对求幂的逆运算,正如除法是乘法的倒数,反之亦然。 这意味着一个数字的对数是必须产生另一个固定数字(基数)的指数。
如果 ,即a的x次方等于N(a>0,且a≠1),那么数x叫做以a为底N的对数(logarithm),记作
。其中,a叫做对数的底数,N叫做真数,x叫做“以a为底N的对数”。
1、特别地,我们称以10为底的对数叫做常用对数(common logarithm),并记为lg。
2、称以无理数e(e=2.71828...)为底的对数称为自然对数(natural logarithm),并记为ln。
对数函数基本性质
参考资料来源:百度百科-对数
展开全部
1、a^(log(a)(b))=b
2、log(a)(MN)=log(a)(M)+log(a)(N);
3、log(a)(M÷N)=log(a)(M)-log(a)(N);
4、log(a)(M^n)=nlog(a)(M)
推导
1、因为n=log(a)(b),代入则a^n=b,即a^(log(a)(b))=b。
2、MN=M×N
由基本性质1(换掉M和N)
a^[log(a)(MN)] = a^[log(a)(M)]×a^[log(a)(N)]
由指数的性质
a^[log(a)(MN)] = a^{[log(a)(M)] + [log(a)(N)]}
又因为指数函数是单调函数,所以
log(a)(MN) = log(a)(M) + log(a)(N)
3、与(2)类似处理
MN=M÷N
由基本性质1(换掉M和N)
a^[log(a)(M÷N)] = a^[log(a)(M)]÷a^[log(a)(N)]
由指数的性质
a^[log(a)(M÷N)] = a^{[log(a)(M)] - [log(a)(N)]}
又因为指数函数是单调函数,所以
log(a)(M÷N) = log(a)(M) - log(a)(N)
4、与(2)类似处理
M^n=M^n
由基本性质1(换掉M)
a^[log(a)(M^n)] = {a^[log(a)(M)]}^n
由指数的性质
a^[log(a)(M^n)] = a^{[log(a)(M)]*n}
又因为指数函数是单调函数,所以
log(a)(M^n)=nlog(a)(M)
基本性质4推广
log(a^n)(b^m)=m/n*[log(a)(b)]
推导如下:
由换底公式(换底公式见下面)[lnx是log(e)(x)e称作自然对数的底] log(a^n)(b^m)=ln(a^n)÷ln(b^n)
由基本性质4可得
log(a^n)(b^m) = [n×ln(a)]÷[m×ln(b)] = (m÷n)×{[ln(a)]÷[ln(b)]}
再由换底公式
log(a^n)(b^m)=m÷n×[log(a)(b)] --------------------------------------------(性质及推导 完)
2、log(a)(MN)=log(a)(M)+log(a)(N);
3、log(a)(M÷N)=log(a)(M)-log(a)(N);
4、log(a)(M^n)=nlog(a)(M)
推导
1、因为n=log(a)(b),代入则a^n=b,即a^(log(a)(b))=b。
2、MN=M×N
由基本性质1(换掉M和N)
a^[log(a)(MN)] = a^[log(a)(M)]×a^[log(a)(N)]
由指数的性质
a^[log(a)(MN)] = a^{[log(a)(M)] + [log(a)(N)]}
又因为指数函数是单调函数,所以
log(a)(MN) = log(a)(M) + log(a)(N)
3、与(2)类似处理
MN=M÷N
由基本性质1(换掉M和N)
a^[log(a)(M÷N)] = a^[log(a)(M)]÷a^[log(a)(N)]
由指数的性质
a^[log(a)(M÷N)] = a^{[log(a)(M)] - [log(a)(N)]}
又因为指数函数是单调函数,所以
log(a)(M÷N) = log(a)(M) - log(a)(N)
4、与(2)类似处理
M^n=M^n
由基本性质1(换掉M)
a^[log(a)(M^n)] = {a^[log(a)(M)]}^n
由指数的性质
a^[log(a)(M^n)] = a^{[log(a)(M)]*n}
又因为指数函数是单调函数,所以
log(a)(M^n)=nlog(a)(M)
基本性质4推广
log(a^n)(b^m)=m/n*[log(a)(b)]
推导如下:
由换底公式(换底公式见下面)[lnx是log(e)(x)e称作自然对数的底] log(a^n)(b^m)=ln(a^n)÷ln(b^n)
由基本性质4可得
log(a^n)(b^m) = [n×ln(a)]÷[m×ln(b)] = (m÷n)×{[ln(a)]÷[ln(b)]}
再由换底公式
log(a^n)(b^m)=m÷n×[log(a)(b)] --------------------------------------------(性质及推导 完)
参考资料: 百度百科
本回答被网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
这能等于
log
x^(n^2)
log
x^(n^2)
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
n+2=log2[2
^(n+2)]
^(n+2)]
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询