初一数学期末下册考试要点
1.初一数学期末下册考试要点
整式的加减
一、代数式
1、用运算符号把数或表示数的字母连结而成的式子,叫做代数式。单独的一个数或字母也是代数式。
2、用数值代替代数式里的字母,按照代数式里的运算关系计算得出的结果,叫做代数式的值。
二、整式
1、单项式:
(1)由数和字母的乘积组成的代数式叫做单项式。
(2)单项式中的数字因数叫做这个单项式的系数。
(3)一个单项式中,所有字母的指数的和叫做这个单项式的次数。
2、多项式
(1)几个单项式的和,叫做多项式。
(2)每个单项式叫做多项式的项。
(3)不含字母的项叫做常数项。
3、升幂排列与降幂排列
(1)把多项式按x的指数从大到小的顺序排列,叫做降幂排列。
(2)把多项式按x的指数从小到大的顺序排列,叫做升幂排列。
三、整式的加减
1、整式加减的理论根据是:去括号法则,合并同类项法则,以及乘法分配率。
去括号法则:如果括号前是“十”号,把括号和它前面的“+”号去掉,括号里各项都不变符号;如果括号前是“一”号,把括号和它前面的“一”号去掉,括号里各项都改变符号。
2、同类项:所含字母相同,并且相同字母的指数也相同的项叫做同类项。
合并同类项:
(1)合并同类项的概念:把多项式中的同类项合并成一项叫做合并同类项。
(2)合并同类项的法则:同类项的系数相加,所得结果作为系数,字母和字母的指数不变。
(3)合并同类项步骤:
a.准确的找出同类项。
b.逆用分配律,把同类项的系数加在一起(用小括号),字母和字母的指数不变。
c.写出合并后的结果。
(4)在掌握合并同类项时注意:
a.如果两个同类项的系数互为相反数,合并同类项后,结果为0.
b.不要漏掉不能合并的项。
c.只要不再有同类项,就是结果(可能是单项式,也可能是多项式)。
说明:合并同类项的关键是正确判断同类项。
3、几个整式相加减的一般步骤:
(1)列出代数式:用括号把每个整式括起来,再用加减号连接。
(2)按去括号法则去括号。
(3)合并同类项。
4、代数式求值的一般步骤:
(1)代数式化简
(2)代入计算
(3)对于某些特殊的代数式,可采用“整体代入”进行计算。
2.初一数学期末下册考试要点
生活中的变量
一、变量、自变量与因变量
①两个变量x与y,y随x的改变而改变,那么x是自变量(先变的量),y是因变量(后变的量)。
二、变量之间的表示方法:
①列表法
②关系式法:能精确地反映自变量与因变量之间数值的对应关系。
③图象法:用水平方向的数轴(横轴)上的点表示自变量,用坚直方向的数轴(纵轴)表示因变量。
生活中的轴对称
一、轴对称图形与轴对称
①一个图形沿某一条直线对折,直线两旁的部分能完成重合的图形叫做轴对称图形。这条直线叫做对称轴。
②两个图形沿某一条直线折叠,这两个图形能完全重合,就说这两个图形关于这条直线成轴对称。这条直线叫做对称轴。
③常见的轴对称图形:线段(两条对称轴),角,长方形,正方形,等腰三角形,等边三角形,等腰梯形,圆,扇形
二、角平分线的性质:角平分线上的点到角两边的距离相等。
∵∠1=∠2PB⊥OBPA⊥OA
∴PB=PA
三、线段垂直平分线:
①概念:垂直且平分线段的直线叫做这条线段的垂直平分线。
②性质:线段垂直平分线上的点到线段两个端点的距离相等。
∵OA=OBCD⊥AB
∴PA=PB
四、等腰三角形性质:(有两条边相等的三角形叫做等腰三角形)
①等腰三角形是轴对称图形;(一条对称轴)
②等腰三角形底边上中线,底边上的高,顶角的平分线重合;(三线合一)
③等腰三角形的两个底角相等。(简称:等边对等角)
五、在一个三角形中,如果有两个角相等,那么它所对的两条边也相等。(简称:等角对等边)
六、等边三角形的性质:等边三角形是特殊的等腰三角形,它具有等腰三角形的所有性质。
①等边三角形的三条边相等,三个角都等于60;②等边三角形有三条对称轴。
七、轴对称的性质:
①关于某条直线对称的两个图形是全等形;②对应线段、对应角相等;
②对应点的连线被对称轴垂直且平分;④对应线段如果相交,那么交点在对称轴上。
八、镜子改变了什么:
1、物与像关于镜面成轴对称;(分清左右对称与上下对称)
2、常见的问题:①物体成像问题;②数字与字母成像问题;③时钟成像问题
概率
一、概率:反映事件发生可能性大小的数。事件P的概率=
二、事件的分类
三、游戏是否公平:双方事件发生的概率是否相等。
3.初一数学期末下册考试要点
列代数式的几个注意事项
(1)数与字母相乘,或字母与字母相乘通常使用“·?”乘,或省略不写。
(2)数与数相乘,仍应使用“×”乘,不用“·?”乘,也不能省略乘号。
(3)数与字母相乘时,一般在结果中把数写在字母前面,如a×5应写成5a。
(4)在代数式中出现除法运算时,一般用分数线将被除式和除式联系,如3÷a,写成a3的形式。
(5)a与b的.差写作a-b,要注意字母顺序,若只说两数的差,当分别设两数为a、b时,则应分类,写做a-b和b-a。
实数
1、平方根
平方根,又叫二次方根,表示为〔±√ ̄〕,其中属于非负数的平方根称之为算术平方根。一个正数有两个实平方根,它们互为相反数,负数没有平方根。
2、立方根
如果一个数的立方等于a,那么这个数叫a的立方根,也称为三次方根。
3、立方根性质
(1)在实数范围内,任何实数的立方根只有一个
(2)在实数范围内,负数不能开平方,但可以开立方
(3)0的立方根是0
4、实数
实数,是有理数和无理数的总称。实数具有封闭性、有序性、传递性、稠密性、完备性等。
4.初一数学期末下册考试要点
相交线
对顶角相等。
过一点有且只有一条直线与已知直线垂直。
连接直线外一点与直线上各点的所有线段中,垂线段最短(简单说成:垂线段最短)。
平行线
经过直线外一点,有且只有一条直线与这条直线平行。
如果两条直线都与第三条直线平行,那么这两条直线也互相平行。
1、直线平行的条件
两条直线被第三条直线所截,如果同位角相等,那么两直线平行。
两条直线被第三条直线所截,如果内错角相等,那么两直线平行。
两条直线被第三条直线所截,如果同旁内角互补,那么两直线平行。
2、平行线的性质
两条平行线被第三条直线所截,同位角相等。
两条平行线被第三条直线所截,内错角相等。
两条平行线被第三条直线所截,同旁内角互补。
二元一次方程组
方程中含有两个未知数(x和y),并且未知数的指数都是1,像这样的方程叫做二元一次方程。
把两个二元一次方程合在一起,就组成了一个二元一次方程组。
使二元一次方程两边的值相等的两个未知数的值,叫做二元一次方程的解。
二元一次方程组的两个方程的公共解,叫做二元一次方程组的解。
消元
将未知数的个数由多化少、逐一解决的'想法,叫做消元思想。
不等式
用小于号或大于号表示大小关系的式子,叫做不等式。
使不等式成立的未知数的值叫做不等式的解。
能使不等式成立的x的取值范围,叫做不等式的解的集合,简称解集。
不等式的性质
不等式两边加(或减)同一个数(或式子),不等号的方向不变。
不等式两边乘(或除以)同一个正数,不等号的方向不变。
不等式两边乘(或除以)同一个负数,不等号的方向改变。
5.初一数学期末下册考试要点
一元一次不等式的解法
1.解不等式:
求不等式解的过程叫做解不等式。
2.一元一次不等式的解法:
与一元一次方程的解法类似,其根据是不等式的基本性质,解一元一次不等式的一般步骤为:(1)去分母;(2)去括号;(3)移项;(4)合并同类项;(5)系数化为1.
要点诠释:
(1)在解一元一次不等式时,每个步骤并不一定都要用到,可根据具体问题灵活运用
(2)解不等式应注意:①去分母时,每一项都要乘同一个数,尤其不要漏乘常数项;②移项时不要忘记变号;③去括号时,若括号前面是负号,括号里的每一项都要变号;④在不等式两边都乘(或除以)同一个负数时,不等号的方向要改变。
3.不等式的解集在数轴上表示:
在数轴上可以直观地把不等式的解集表示出来,能形象地说明不等式有无限多个解,它对以后正确确定一元一次不等式组的解集有很大帮助。
要点诠释:
在用数轴表示不等式的解集时,要确定边界和方向:
(1)边界:有等号的是实心圆圈,无等号的是空心圆圈;(2)方向:大向右,小向左
规律方法指导(包括对本部分主要题型、思想、方法的总结)
1、不等式的基本性质是解不等式的主要依据。(性质2、3要倍加小心)
2、检验一个数值是不是已知不等式的解,只要把这个数代入不等式,然后判断不等式是否成立,若成立,就是不等式的解;若不成立,则就不是不等式的解。
3、解一元一次不等式是一个有目的、有根据、有步骤的不等式变形,最终目的是将原不等式变为或的形式,其一般步骤是:(1)去分母;(2)去括号;(3)移项;(4)合并同类项;(5)化未知数的系数为1。这五个步骤根据具体题目,适当选用,合理安排顺序。但要注意,去分母或化未知数的系数为1时,在不等式两边同乘以(或除以)同一个非零数时,如果是个正数,不等号方向不变,如果是个负数,不等号方向改变。