小学生奥数行程问题应用题
1.小学生奥数行程问题应用题
1、铁路旁的一条平行小路上,有一行人与一骑车人同时向南行进。行人速度为3.6千米/小时,骑车人速度为10.8千米/小时。这时有一列火车从他们背后开过来,火车通过行人用22秒,通过骑车人用26秒。这列火车的车身总长是多少米?
【解析】
S=(V火车-V人)×时间=(V火车-V车)×时间
V人=3.6千米/小时=1米/秒
V车=10.8千米/小时=3米/秒
S=(V火车-1)×22=(V火车-3)×26
S=286米
或者
合时间比=22:26=11:13
合速度比=13:11
V人:V车=1:3
(14-1):(14-3)=13:11
所以V火车=14米/秒
S=(14-1)×22=286米
2、小刚和小强租一条小船,向上游划去,不慎把水壶掉进江中,当他们发现并调过船头时,水壶与船已经相距2千米,假定小船的速度是每小时4千米,水流速度是每小时2千米,那么他们追上水壶需要多少时间?
【解析】
我们来分析一下,全程分成两部分,第一部分是水壶掉入水中,第二部分是追水壶
第一部分,水壶的速度=V水,小船的总速度则是=V船+V水
那么水壶和小船的合速度就是V船,所以相距2千米的时间就是:2/4=0.5小时
第二部分,水壶的速度=V水,小船的总速度则是=V船-V水
那么水壶和小船的合速度还是V船,所以小船追上水壶的时间还是:2/4=0.5小时
2.小学生奥数行程问题应用题
1、邮递员早晨7时出发送一份邮件到对面的山坳里,从邮局开始要走12千米的上坡路,8千米的下坡路。他上坡时每小时走4千米,下坡时每小时走5千米,到达目的地后停留1小时,又从原路返回,邮递员什么时候可以回到邮局?
【解析】
核心公式:时间=路程÷速度
去时:T=12/4+8/5=4.6小时
返回:T=8/4+12/5=4.4小时
T总=4.6+4.4+1=10小时
7:00+10:00=17:00
整体思考:
全程共计:12+8=20千米
去时的上坡变成返回时的下坡,去时的下坡变成返回时的上坡
因此来回走的时间为:20/4+20/5=9小时
所以总的时间为:9+1=10小时
7:00+10:00=17:00
2、小明从甲地到乙地,去时每小时走6千米,回时每小时走9千米,来回共用5小时。小明来回共走了多少千米?
【解析】
当路程一定时,速度和时间成反比
速度比=6:9=2:3
时间比=3:2
3+2=5小时,正好
S=6×3=18千米
来回为18×2=36千米
3.小学生奥数行程问题应用题
1、甲乙两队学生从相隔18千米的两地同时出发相向而行。一个同学骑自行车以每小时15千米的速度在两队之间不停地往返联络。甲队每小时行5千米,乙队每小时行4千米。两队相遇时,骑自行车的同学共行多少千米?
2、A、B两地相距400千米,甲、乙两车同时从两地相对开出,甲车每小时行38千米,乙车每小时行42千米。一只燕子以每小时50千米的速度和甲车同时出发向乙车飞去,遇到乙车又折回向甲车飞去。这样一直飞下去,燕子飞了多少千米,两车才能相遇?
3、甲、乙两个车队同时从相隔330千米的两地相向而行,甲队每小时行60千米,乙队每小时行50千米。一个人骑摩托车以每小时行80千米的速度在两车队中间往返联络,问两车队相遇时,摩托车行驶了多少千米?
4、甲乙两艘轮船分别从A、B两港同时出发相向而行,甲船每小时行驶18千米,乙船每小时行驶15千米,经过6小时两船在途中相遇。两地间的水路长多少千米?
5、一辆汽车和一辆摩托车同时分别从相距900千米的甲、乙两地出发,汽车每小时行40千米,摩托车每小时行50千米。8小时后两车相距多少千米?
4.小学生奥数行程问题应用题
1、甲、乙二人以均匀的速度分别从A、B两地同时出发,相向而行,他们第一次相遇地点离A地4千米,相遇后二人继续前进,走到对方出发点后立即返回,在距B地3千米处第二次相遇,求两次相遇地点之间的距离。
2、甲、乙、丙三人行路,甲每分钟走60米,乙每分钟走67.5米,丙每分钟走75米,甲乙从东镇去西镇,丙从西镇去东镇,三人同时出发,丙与乙相遇后,又经过2分钟与甲相遇,求东西两镇间的路程有多少米?
3、A,B两地相距540千米。甲、乙两车往返行驶于A,B两地之间,都是到达一地之后立即返回,乙车较甲车快。设两辆车同时从A地出发后第一次和第二次相遇都在途中P地。那么两车第三次相遇为止,乙车共走了多少千米?
5.小学生奥数行程问题应用题
1、甲乙两辆汽车同时从东西两地相向开出,甲车每小时行56千米,乙车每小时行48千米,两车在离中点32千米处相遇,求东西两地的距离是多少千米?
2、甲乙两辆汽车同时从东站开往西站。甲车每小时比乙车多行12千米,甲车行驶四个半小时到达西站后,没有停留,立即从原路返回,在距离西站31。5千米的地方和乙车相遇,甲车每小时行多少千米?
3、两人骑自行车沿着900米长的环形跑道行驶,他们从同一地点反向而行,那么经过18分钟后就相遇一次,若他们同向而行,那经过180分钟后快车追上慢车一次,求两人骑自行车的速度?