初中数学教案
作为轿喊一名教师,最基本的就是要做好教案。如何做一个好的教案,提起学生的兴趣呢。下面是范文栏目的我为大家准备的初中数学教案,欢迎大家阅读和参考。
初中数学教案:七年级数学《代数式》教案
教学目标
1.使学生认识字母表示数的意义,了解字母表示数是数学的一大进步;
2.了解代数式的概念,使学生能说出一个代数式所表示的数量关系;
3.通过对用字母表示数的讲解,初步培养学生观察和抽象思维的能力;
4.通过本节课的教学,使学生深刻体会从特殊到一般的的数学思想方法。
教学建议
1. 知识结构:本小节先回顾了小学学过的字母表示的两种实例,一是运算律,二是公式,从中看出字母表示数的优越性,进而引出代数式的概念。
2.教学重点分析:教科书,介绍了小学用字母表示数的实例,一个是运算律,一个是常用公式,上述两种例子应用广泛,且能很好地体现用字母表示数所具有的简明、普遍的优越性,用字母表示是数学从算术到代数的一大进步,是代数的显著特点。运用算术的方法解决问题,是小学学生的思维方法 ,现在,从具体的数过渡到用字母表示数,渗透了抽象概括的思维方法,在认识上是一个质的飞跃。对代数式的概念课文没有直接给出,而是用实例形象地说明了代数式的概念。对代数式的概念可以从三个方面去理解:
(1)从具体的数到用字母表示数,是抽象思维的开始,体现了特殊与一般的辨证关系,用字母表示数具有简明、普遍的优越性.
(2)代数式中并不要求数和表示数的字母同时出现,单独的一个数和字母也是代数式.如:2,m都是代数式.
等都不是代数式.
3.教学难点分析:能正确说出一个代数式的数量关系,即用语言表达代数式的意义,一定要理清代数式中含有的各种运算及其顺序。用语言表达代数式的意义,具体说法没有统一规定,以简明而不引起误会为出发点。
如:说出代数式7(a-3)的意义。
分析 7(a-3)读成7乘a减3,这样就产生歧义,究竟是7a-3呢?还是7(a-3)呢?有模棱两可之感。代数式7(a-3)的最后运算是积,应把a-3作为一个整体。所以,7(a-3)的意义是7与(a-3)的积。
4.书写代数式的注意事项:
(1)代数式中数字与字母或者字母与字母相乘时,通常把乘号简写作“·”或省略不写,同时要求数字应写在字母前面.
如3×a ,应写作3.a 或写作3a ,a×b 应写作3.a 或写作ab .带分数与字母相乘,应把带分数化成假分数,
#FormatImgID_0#.数字与数字相乘一般仍用“×”号.
(2)代数式中有除法运算时,一般按照分数的写法来写.
(3)含有加减运算的代数式需注明单位时,一定要把整个式子括起来.
5.对本节例题的分析:
例1是用代数式表示几个比较简单的数量关系唤颤,这些小学都学过.比较复杂一些的数量关系的代数式表示,课文安排在下一节中专门介绍.
例2是说出一些比较简单的代数式的意义.因为代数式中用字母表示数,所以把字母也看成数,一种特殊的数,就可以像看待原来比较熟悉的数式一样,说出一个代数式所表示的数量关系,只是另外还要考虑乘号可能省略等新规定而已.
6.教法建议
(1)因为这一章知识大部分在小学学习过,讲授新课之前要先复习小学学过的运算律,在学生原有的认知结构上,提出新的问题。这样即复习了旧知识,又引出了新知识,能激发学生的学习兴趣。在教学中,一定要注意发挥本章承上启下的作用,搞好小学数学与初中代数的衔接,使学生有一个良好闭链野的开端。
(2)在本节的学习过程中,要使学生理解代数式的概念,首先要给学生多举例子(学生比较熟悉、贴近现实生活的例子),使学生从感性上认识什么是代数式,理清代数式中的运算和运算顺序,才能正确说出一个代数式所表示的数量关系,从而认识字母表示数的意义——普遍性、简明性,也为列代数式做准备。
(3)条件比较好的学校,老师可选用一些多媒体课件,激发学生的学习兴趣,增强学生自主学习的能力。
(4)老师在讲解第一节之前,一定要对全章内容和课时安排有一个了解,注意前后知识的衔接,只有这样,我们老师才能教给学生系统的而不是一些零散的知识,久而久之,学生头脑中自然会形成一个完整的知识体系。
(5)因为是新学期代数的第一节课,老师一定要给学生一个好印象,好的开端等于成功了一半。那么,怎么才能给学生留下好印象呢?首先,你要尽量在学生面前展示自己的才华。比,英语口语好的老师,可以用英语做一个自我介绍,然后为学生说一段祝福语。第二,上课时尽量使用多种语言与学生交流,其中包括情感语言(眉目语言、手势语言等),让学生感受到老师对他的关心。
7.教学重点、难点:
重点:用字母表示数的意义
难点:学会用字母表示数及正确说出一个代数式所表示的数量关系。
教学设计示例
课堂教学过程设计
一、从学生原有的认知结构提出问题
1在小学我们曾学过几种运算律?都是什么?如可用字母表示它们?
(通过启发、归纳最后师生共同得出用字母表示数的五种运算律)
(1)加法交换律 a+b=b+a;
(2)乘法交换律 a·b=b·a;
(3)加法结合律 (a+b)+c=a+(b+c);
(4)乘法结合律 (ab)c=a(bc);
(5)乘法分配律 a(b+c)=ab+ac
指出:(1)“×”也可以写成“·”号或者省略不写,但数与数之间相乘,一般仍用“×”;
(2)上面各种运算律中,所用到的字母a,b,c都是表示数的字母,它代表我们过去学过的一切数
2(投影)从甲地到乙地的路程是15千米,步行要3小时,骑车要1小时,乘汽车要0.25小时,试问步行、骑车、乘汽车的速度分别是多少?
3若用s表示路程,t表示时间,ν表示速度,你能用s与t表示ν吗?
4(投影)一个正方形的边长是a厘米,则这个正方形的周长是多少?面积是多少?
(用I厘米表示周长,则I=4a厘米;用S平方厘米表示面积,则S=a2平方厘米)
此时,教师应指出:(1)用字母表示数可以把数或数的关系,简明的表示出来;(2)在公式与中,用字母表示数也会给运算带来方便;(3)像上面出现的a,5,15÷3,4a,a+b,s/t 以及a2等等都叫代数式.那么究竟什么叫代数式呢?代数式的意义又是什么呢?这正是本节课我们将要学习的内容.
三、讲授新课
1代数式
单独的一个数字或单独的一个字母以及用运算符号把数或表示数的字母连接而成的式子叫代数式.学习代数,首先要学习用代数式表示数量关系,明确代数上的意义
2举例说明
例1 填空:
(1)每包书有12册,n包书有__________册;
(2)温度由t℃下降到2℃后是_________℃;
(3)棱长是a厘米的正方体的体积是_____立方厘米;
(4)产量由m千克增长10%,就达到_______千克
(此例题用投影给出,学生口答完成)
解:(1)12n; (2)(t-2); (3)a3; (4)(1+10%)m
例2 说出下列代数式的意义:
解:(1)2a+3的意义是2a与3的和;(2)2(a+3)的意义是2与(a+3)的积;
(5)a2+b2的意义是a,b的平方的和;(6)(a+b)2的意义是a与b的和的平方
说明:(1)本题应由教师示范来完成;
(2)对于代数式的意义,具体说法没有统一规定,以简明而不致引起误会为出发点如第(1)小题也可以说成“a的2倍加上3”或“a的2倍与3的和”等等
例3 用代数式表示:
(1)m与n的和除以10的商;
(2)m与5n的差的平方;
(3)x的2倍与y的和;
(4)ν的立方与t的3倍的积
分析:用代数式表示用语言叙述的数量关系要注意:①弄清代数式中括号的使用;②字母与数字做乘积时,习惯上数字要写在字母的前面
四、课堂练习
1填空:(投影)
(1)n箱苹果重p千克,每箱重_____千克;
(2)甲身高a厘米,乙比甲矮b厘米,那么乙的身高为_____厘米;
(3)底为a,高为h的三角形面积是______;
(4)全校学生人数是x,其中女生占48%?则女生人数是____,男生人数是____
2说出下列代数式的意义:(投影)
3用代数式表示:(投影)
(1)x与y的和; (2)x的平方与y的立方的差;
(3)a的60%与b的2倍的和; (4)a除以2的商与b除3的商的和
五、师生共同小结
首先,提出如下问题:
1本节课学习了哪些内容?2用字母表示数的意义是什么?
3什么叫代数式?
教师在学生回答上述问题的基础上,指出:①代数式实际上就是算式,字母像数字一样也可以进行运算;②在代数式和运算结果中,如有单位时,要正确地使用括号
六、作业
1一个三角形的三条边的长分别的a,b,c,求这个三角形的周长
2张强比王华大3岁,当张强a岁时,王华的年龄是多少?
3飞机的速度是汽车的40倍,自行车的速度是汽车的1/3 ,若汽车的速度是ν千米/时,那么,飞机与自行车的速度各是多少?
4a千克大米的售价是6元,1千克大米售多少元?
5圆的半径是R厘米,它的面积是多少?
6用代数式表示:
(1)长为a,宽为b米的长方形的周长;
(2)宽为b米,长是宽的2倍的长方形的周长;
(3)长是a米,宽是长的1/3 的长方形的周长;
(4)宽为b米,长比宽多2米的长方形的周长
《代数式》教学设计2
1、教学目标:
1) 知识与技能目标:
① 让学生经历代数式概念的产生过程,了解代数式的概念.
② 使学生会用代数式表示简单的数量关系,并能运用代数式这一数学模型去表示和
解释简单实际问题中的数量关系.
2) 过程与方法目标:
① 使学生在探索与创造的数学学习活动中,学会与人合作、与人交流.
② 通过自主探索、小组合作、互相交流数学活动,让学生体验如何进行数学学习,变"学会"为"会学".
3) 情感与态度目标:
① 渗透代数式的模型思想,让学生体会数学知识来源于实践又反作用于实践的辩证唯物主义思想,进一步发展符号感.
② 激发学生探究数学的兴趣,发扬合作学习的精神,养成踏实细致、独立思考、严谨科学的学习习惯.
③ 利用实际情境,渗透爱国主义教育和乡土文化教育,培养学生关注生活,热爱数学的情感,增进学生对数学的理解和应用数学的信心.
2、教学重、难点:
1) 教学重点:代数式的概念和列代数式.
突出重点措施:
(1)通过比较--判别--交流--构造等环节,让学生经历代数式概念的产生过程,使学生在过程中获得对数学概念的理解.
(2)通过"根据语言表述的数量关系列代数式"和"把代数式表示的数量关系用语言表述"两方面进行对比、观察、归纳,让学生获得必需的数学经验.
2) 教学难点:用代数式表示实际问题中的数量关系.
突破难点策略:
(1)分三步分散难点①引入时设计大量学生身边的实际情景,让学生体会到代数式存在的普遍性.②让学生给自己构造的一些简单代数式赋予实际意义,使学生进一步体会到代数式的模型思想。③通过"开动脑筋齐探索"和"返程路上解疑问"等环节进一步提高学生分析、解决实际问题的能力.
(2)通过FLASH演示情景,小组合作交流等形式突破代数式的应用瓶颈.
3、教学流程:
教学 环节 教学过程 师生活动 设计说明
创设情境导入新课 引导学生欣赏鲁迅纪念馆的照片,简单介绍鲁迅其人其事,进行爱国主义教育和乡土文化教育,激发学生的自豪感,并请学生做导游,点出这节课的主线:边参观鲁迅纪念馆边学习身边的数学.
沿参观旅程依此遇到下列问题:
1、大家知道鲁迅纪念馆距学校有多远吗?若鲁迅纪念馆距学校s千米,校车的速度为50千米/小时,那么经多少小时后到达博物馆?
2、买门票.鲁迅纪念馆门票价格为:成人每人60元,学生每人40元.如果让你去买门票,你该怎么买?我们有a个老师b个学生,买门票需付多少钱呢?
3、在参观时了解到了纪念馆的一些情况:
(1)鲁迅纪念馆共有鲁迅故居、百草园、三味书屋、鲁迅祖居和鲁迅生平事迹陈列厅等4个开放场所,建筑面积分别为a,b,c,d平方米.,你知道平均每个场所有多少平方米吗?
(2)鲁迅生平事迹陈列厅呈长方形,东西长m米,宽n米,共展出鲁迅生平展品p件. 那么鲁迅生平事迹陈列厅占地面积为多少平方米呢?平均每平方米展出了多少件展品呢?
让学生根据情景列出算式.
【师】:展示图片,引导学生进入参观的旅程.
【生】:成为参观旅程的主角,依次解决旅程中遇到的实际问题.
【师】:在点出字母表示数后引导学生列算式.并回顾前一节中的书写规定,突出书写的规范性.
由学生熟悉的鲁迅纪念馆引入,进行爱国主义教育和乡土文化教育,体现数学的人文价值,突出数学的教育功能.让学生做导游,体现学生的主体地位.碰到的一些数学问题都是在旅途中出现的,符合学生的认知特点,激发学习的内动力,也使学生意识到代数式的普遍性.1、2两题的设计是为了渗透代数式的普遍意义。
1)类比旧知探新知:
引导学生观察上面所列的算式:
它们与我们以前学过的算式有什么区别?点出课题(板书课题)
概念:像 这样含有字母的数学表达式称为代数式
先判别下列哪些是代数式?再说说你对代数式构成的看法. 【师】:引导学生观察算式,并与以前学过的算式相比较,得出概念.
在学生交流的基础上点明代数式的构成。
让学生经历代数式概念产生的过程,使学生在数学活动过程中建构自己的数学知识,获得对概念的理解,发展数学能力。改变学生的学习方式,变"学会"为"会学"。
师生互动探索新知
动手计算再探新知
欢乐游戏巩固新知
对代数式构成的理解:
(1)一个代数式由数、表示数的字母和运算符号组成. 这里的运算指加、减、乘、除、乘方和开方6种运算.
(2)为了今后研究和表述方便,规定单独一个数或者字母也称代数式.
2)大家一起来列式:
用代数式表示:
(1) x的3倍与3的差;
(2) x的 倍与y的一半的和;
(3)2a的立方根;
(4)a与b的和的平方;
(5)a与b的平方的和.;
(6)a与b两数的平方和.
巩固练习:用代数式表示:
(1) a与b的 的和 ;
(2) m与n两数的倒数差;
(3) 除 所得的商;
(4)x与1的差的平方根.
教师在讲评时突出代数式的书写规范及列代数式的注意点,点明各种运算的意义:"+"--和,"-"--差,"×"--积,"÷"--商.
3)聪明才智共编式
请根据下列数字与字母,添上适当的运算符号,编写出几个你喜欢的代数式,并试着用语言表述所编代数式的意义.
以小组为单位,先互相交流编写的代数式及其意义,然后挑选1-2个简单的代数式,结合生活实际,试着赋予代数式实际意义,并在组内交流.
4)开动脑筋齐探索
各小组选取下列的1个主题作为小组的探索内容,小组成员先自主探索,想想各主题还能引伸出哪些问题,再在组内交流。
主题1:用代数式表示偶数、奇数;(提示:可考虑如何表示三个连续偶数等)
主题2:下图是三国时期的数学家赵爽在《周髀算经》中作的图,它由四个完全一样的直角三角形拼成,史称"弦图",标志着中国古代的数学成就,在北京召开的2002年国际数学家大会(TCM-2002)把它作为会标.请你用代数式表示出大正方形的面积.(提示:想一想有哪几种表示方法)
主题3: 摆火柴梗游戏:如下图,用火柴梗摆出一个三角形至少需3根火柴梗,摆出2个三角形至少需5根火柴梗,摆出3个三角形至少需7根火柴梗......请你以此探索:摆出10个三角形至少需多少火柴梗?摆出n个三角形呢?(提示:如果摆成正方形呢?)
游戏之中验真知
游戏-你选我砸共过关:8个金蛋中任选其中一个金蛋,如果出现金花,大家鼓掌PASS,否则你必须回答其中的问题(你可以自己作答,也可以求助本组同学).
(1)列代数式:a与b的差的倒数
(2)说出代数式:(a+b)(a-b)的意义
(3)已知甲数比乙数的2倍少1.若设乙数为x,用关于x的代数式表示甲数.变式:若设甲数为x,用关于x的代数式表示乙数.
(4)纪念馆外一五彩花圃的形状如图,则花圃的面积为_______.
【生】:观察,类比,在判别的基础上发表自己对概念的理解,进行交流.
【生】:举手发言,解决问题.
【师】:引导学生注意每题的关键词,指导学生正确书写. 并进行及时评价.
【生】:构造代数式,交流代数式的意义,并用生活经验对所构造代数式进行解释.
【师】:引导学生把意义表达清楚,多作鼓励,进行多元评价.
【生】:自主探索,小组合作,代表发言,辩论交流.
【师】:及时评价。
【生】:选择金蛋号,回答里面的问题,其它同学思考,提供帮助
【师】:代为砸蛋
用代数式表示常用的数量关系是方程、不等式、函数等各种数学知识的基础,是本节课的重点,这里花较多的时间让学生进行训练,关键是让学生学扎实,突出数学课程的基础性和普及性,使人人获得必需的数学。
通过"根据语言表述的数量关系列代数式"和"把代数式表示的数量关系用语言表述"两方面进行对比、观察、归纳,强化了代数式的符号性,让学生获得必需的数学经验.同时,开放性问题的设计也为不同的人在数学上得到不同的发展创造了条件,体现了数学课程的发展性。 让学生结合生活实际,赋予代数式实际意义,使学生进一步意识到代数式的概念是为解决实际问题的需要而产生的.
主题1:突出代数式的普遍意义,渗透集合思想。
主题2:渗透数学人文和爱国情怀,让学生体会到其实数学发现就在我们身边,体验数学探究成功的喜悦。
主题3:突出数学活动的趣味性,使学生意识到玩也可以玩出数学来,渗透数学意识。
小组合作交流,更能发挥学生解决难题的主动性,使每个学生在探讨交流中都有收获.
激发兴趣,活跃氛围,巩固知识,学中玩,玩中学.
返程途中解决难题返程路上解疑问
参观完纪念馆后大家乘校车返回学校,校车以50千米/小时的速度行驶,计划t小时后回到学校,现因道路通畅,校车的速度增加v千米/小时,那么回到学校需多少时间?
【师】:指导学生分析题目。
【生】:解决问题.聆听别人的思维,形成自己的经验。
首尾呼应,整个旅程有始有终.进一步突出学习代数式的目的:解决实际问题.
你说我说清点收获 你说我讲共交流
今天老师和同学们一起共同游览了鲁迅纪念馆,一路下来收获不小吧!说说你的感受,让大家一起来分享,怎么样?……
1、代数式的概念
2、列代数式的要求
3、代数式的应用
请你把自己的感受和体会写进今天的数学日记中去.
【生】:交流感受,体会收获 【师】:根据学生的交流作适当归纳,并对学生自主探索、合作交流等学习过程作多元评价。
学生谈感受,教师作补充,培养学生的数学语言表达能力和自我整理的学习习惯.
4、课后拓展 课后延伸促提高
1、阅读课本P90-92内容.
2、做课本P92的作业题和作业本作业(A、B组题必做,C组题选做)
3、收集并整理生活中用代数式表示数量关系的例子,并在组内交流.
课内引申到课外,使不同的人在数学上得到不同的发展.
5、设计说明:
(一)指导思想:
1、以落实课程标准为终极目标;以学生知识技能的形成、数学思维的完善和情感态度的发展为出发点;以多媒体课件为辅助教学手段;以教师的组织、引导、参与为依托;以学生的积极动脑、动口为主线来构建本课时的教学模式,促进学生的有效学习活动.
2、以数学来源于生活,又服务于生活为原则设计整节课.
3、突出新知识必须在学生自主探索,交流合作的基础上让学生自己去发现和归纳.
(二)主要理念:
1、重视情景创设,注重知识从现实中来到现实中去的原则.
1、 突出数学学习内容的的现实性、有价值性和富有挑战性.
2、 注重数学与英语、信息技术等课程的整合.
3、 关注学生学习的过程,进行多元评价.
(三)设计思路:
1、以贯彻新课程理念为前提,从学生的认知特点出发,通过创设情境,以参观鲁迅纪念馆为主线,把整节课串联起来,让学生从始至终都置身于参观游玩之中,却又紧紧围绕学习,仿佛玩中学,学中玩,不知不觉中来学习新知识.
2、引导学生观察、类比、联想已有的知识经验,归纳、总结新的知识等一系列活动,让学生充分感受知识的产生和发展过程,使学生始终处于积极的思维状态之中,使新概念的得出不觉得意外,让学生跳一跳就可以摘得到桃子。
3、通过对"根据语言表述的数量关系列代数式"和"把代数式表示的数量关系用语言表述"两方面进行对比、观察、归纳,使学生对列代数式有更深入的体会,实现人人获得必需的数学.
4、设计游戏活动-砸金蛋,激发学生的积极性,让学生主动的参与知识的巩固、深化过程,引发内在的学习动力.
5、通过对开放性问题(如结合生活经验列举代数式)、自主探究题、拓展创新题(如金蛋中的题目)等的设计,实现"不同的人在数学上得到不同的发展".