等差数列的通项公式是什么?
1个回答
展开全部
第n项的值an=首项+(项数-1)×公差。
an=am+(n-m)d ,若已知某一项am,可列出与d有关的式子求解an。
例如 a10=a4+6d或者a3=a7-4d。
前n项的和Sn=首项×n+项数(项数-1)公差/2。
公差d=(an-a1)÷(n-1)(其中n大于或等于2,n属于正整数)。
项数=(末项-首项)÷公差+1。
末项=首项+(项数-1)×公差。
当数列为奇数项时,前n项的和=中间项×项数。
数列为偶数项,前n项的和=(首尾项相加×项数)÷2。
注意。
等差数列是常见数列的一种,可以用AP表示,如果一个数列从第二项起,每一项与它的前一项的差等于同一个常数,这个数列就叫做等差数列,而这个常数叫做等差数列的公差,公差常用字母d表示。
例如:1,3,5,7,9……(2n-1)。等差数列{an}的通项公式为:an=a1+(n-1)d。前n项和公式为:Sn=n*a1+n(n-1)d/2或Sn=n(a1+an)/2[2]。注意: 以上整数。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询