驻点是什么意思?

 我来答
清风聊生活
高粉答主

2023-04-20 · 醉心答题,欢迎关注
知道小有建树答主
回答量:3066
采纳率:100%
帮助的人:51.7万
展开全部

f'x=(6-2x)(4y-y²)=0, 得x=3, 或y=0, 4
f'y=(6x-x²)(4-2y)=0, 得x=0, 6, 或y=2

得驻点(3, 2), (0,0) , (0, 4), (6, 0), (6, 4)
A=f"xx=-2(4y-y²)

B=f"xy=(6-2x)(4-2y)=4(3-x)(2-y)
C=f"yy=-2(6x-x²)

在(3,2), A=-8, B=0, C=-18, B²-AC=-144<0, 此为极大值点,极大值为f(3,2)=36;

在(0,0), A=0, B=24, C=0, B²-AC=24²>0, 不是极值点;

在(0,4), A=0, B=-24, C=0, B²-AC=24²>0, 不是极值点;

在(6,0), A=0, B=-24, C=0, B²-AC=24²>0, 不是极值点;

在(6,4), A=0, B=24, C=0, B²-AC=24²>0, 不是极值点。

相关如下:

设函数z=f(x,y)在点P0(x,,y0)的某邻域内有定义,对这个邻域中的点P(x,y)=(x0+△x,y0+△y),若函数f在P0点处的增量△z可表示为:

△z=f(x0+△x+△y)-f(x0,y0)=A△x+B△y+o(ρ),其中A,B是仅与P0有关的常数,ρ=〔(△x)^2+(△y)^2〕^0.5.o(ρ)是较ρ高阶无穷小量,即当ρ趋于零是o(ρ)/ρ趋于零.则称f在P0点可微。


可微性的几何意义。

可微的充要条件是曲面z=f(x,y)在点P(x0,y0,f(x0,y0))存在不平行于z轴的切平面Π的充要条件是函数f在点P0(x0,y0)可微。

这个切面的方程应为Z-z=A(X-x0)+B(Y-y0)。

A,B的意义如定义所示。

推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式