k均值聚类算法
k均值聚类算法是:先随机选取K个对象作为初始的聚类中心。然后计算每个对象与各个种子聚类中心之间的距离,这个过程将不断重复直到满足某个终止条件。
聚类中心以及分配给它们的对象就代表一个聚类。每分配一个样本,聚类的聚类中心会根据聚类中现有的对象被重新计算。这个过程将不断重复直到满足某个终止条件。终止条件可以是没有(或最小数目)对象被重新分配给不同的聚类,没有(或最小数目)聚类中心再发生变化,误差平方和局部最小。
k均值聚类是最著名的划分聚类算法,由于简洁和效率使得他成为所有聚类算法中最广泛使用的。给定一个数据点集合和需要的聚类数目k,k由用户指定,k均值算法根据某个距离函数反复把数据分入k个聚类中。
k均值聚类算法的优缺点
1、优点
原理比较简单,实现也是很容易,收敛速度快;聚类效果较优,算法的可解释度比较强。聚类算法原理简单,可解释强,实现方便,可广泛应用在数据挖掘、聚类分析、数据聚类、模式识别、金融风控、数据科学、智能营销和数据运营等多个领域,有着广泛的应用前景。
2、缺点
K值的选取不好把握;对于不是凸的数据集比较难收敛;如果各隐含类别的数据不平衡,比如各隐含类别的数据量严重失衡,或者各隐含类别的方差不同,则聚类效果不佳;采用迭代方法,得到的结果只是局部最优;对噪音和异常点比较的敏感。
以上内容参考百度百科-K均值聚类算法
2024-12-25 广告