什么是中心极限定理
中心极限定理,是指概率论中讨论随机变量序列部分和分布渐近于正态分布的一类定理。这组定理是数理统计学和误差分析的理论基础,指出了大量随机变量近似服从正态分布的条件。它是概率论中最重要的一类定理,有广泛的实际应用背景。
在自然界与生产中,一些现象受到许多相互独立的随机因素的影响,如果每个因素所产生的影响都很微小时,总的影响可以看作是服从正态分布的。
中心极限定理就是从数学上证明了这一现象。最早的中心极限定理是讨论重点,伯努利试验中,事件A出现的次数渐近于正态分布的问题。
中心极限定理是概率论中最重要的一类定理,它支撑着和置信区间相关的T检验和假设检验的计算公式和相关理论。如果没有这个定理,之后的推导公式都是不成立的。事实上,以上对于中心极限定理的两种解读,在不同的场景下都可以对A/B测试的指标置信区间判定起到一定作用。
中心极限定理有着有趣的历史。这个定理的第一版被法国数学家棣莫弗发现,他在1733年发表的卓越论文中使用正态分布去估计大量抛掷硬币出现正面次数的分布。
这个超越时代的成果险些被历史遗忘,所幸著名法国数学家拉普拉斯在1812年发表的巨著Théorie Analytique des Probabilités中拯救了这个默默无名的理论。拉普拉斯扩展了棣莫弗的理论,指出二项分布可用正态分布逼近。
2020-05-31 广告