大学要学会这8种算法程序员
程序员8条程序算法必须掌握
算法一: 快速排序算法
快速排序是由东尼·霍尔所发展的一种排序算法。在平均状况下,排序n个项目要O(nlogn)次比较。在最坏状况下则需要O(n2)次比较,但这种状况并不常见。事实上,快速排序通常明显比其他O(nlogn)算法更快,因为它的内部循环 (innerloop)可以在大部分的架构上很有效率地被实现出来。快速排序使用分治法(Divideandconquer)策略来把一个串行(list)分为两个子串行(sub-lists)。
算法二: 堆排序算法
堆排序(Heapsort)是指利用堆这种数据结构所设计的一种排序算法。堆积是一个近似完全二叉树的结构,并同时满足堆积的性质:即子结点的键值或索引总是小干(或者大干)它的父节点。堆排序的平均时间复杂度为O(nlogn)。
算法步骤:
1.创建一个堆H[0.n-1]
2.把堆首(最大值)和堆尾互换
3.把堆的尺寸缩小1,并调用shift_down(0),目的是把新的数组顶端数据调整到相应位置4.重复步骤2,直到堆的尺寸为1
算法三: 归并排序
归并排序(Mergesort,台湾译作: 合并排序)是建立在归并操作上的一种有效的排序算法。该算法是采用分治法(DivideandConquer)的一个非常典型的应用。
算法步骤:
1.申请空间,使其大小为两个已经排序序列之和,该空间用来存放合并后的序列
2.设定两个指针,最初位置分别为两个已经排序序列的起始位置
3.比较两个指针所指向的元素,选择相对小的元素放入到合并空间,并移动指针到下一位置4.重复步骤3直到某一指针达到序列尾5.将另一序列剩下的所有元素直接复制到合并序列尾
算法四: 二分查找算法二分查找算法
是一种在有序数组中查找某一特定元素的搜索算法。
搜素过程从数组的中间元素开始,如果中间元素正好是要查找的元素,则搜素过程结束:如果某一特定元素大干或者小干中间元素,则在数组大于或小千中间元素的那一半中查找,而且跟开始一样从中间元素开始比较。如果在某一步骤数组为空,则代表找不到。这种搜索算法每一次比较都使搜索范围缩小一半。折半搜索每次把搜索区域减少一半,时间复杂度为O(logn)
如果在某一步骤数组为空,则代表找不到。这种搜索算法每一次比较都使搜索范围缩小一半。折半搜索每次把搜索区域减少一半,时间复杂度为O(logn) 。
算法五: BFPRT(线性查找算法)
BFPRT算法解决的问题十分经典,即从某n个元素的序列中选出第k大(第k小)的元素,通过巧妙的分析BFPRT可以保证在最坏情况下仍为线性时间复杂度该算法的思想与快速排序思想相似,当然,为使得算法在最坏情况下,依然能达到o(n)的时间复杂度,五位算法作者做了精妙的处理。
算法六: DFS(深度优先搜索)
深度优先搜索算法(Depth-First-Search),是搜索算法的一种。它沿着树的深度遍历树的节点,尽可能深的搜索树的分支。当节点v的所有边都己被探寻过,搜索将回溯到发现节点v的那条边的起始节点。这一过程一直进行到已发现从源节点可达的所有节点为止。
如果还存在未被发现的节点,则选择其中一个作为源节点并重复以上过程,整个进程反复进行直到所有节点都被访问为止。DFS属于盲目搜索。深度优先搜索是图论中的经典算法,利用深度优先搜索算法可以产生目标图的相应拓扑排序表,利用拓扑排序表可以方便的解决很多相关的图论问题,如最大路径问题等等。一般用堆数据结构来辅助实现DFS算法。
算法七: BFS广度优先搜索算法
(Breadth-First-Search),是一种图形搜索算法。简单的说,BFS是从根节点开始,沿着树(图)的宽度遍历树(图)的节点。如果所有节点均被访问,则算法中止BFS同样属干盲目搜索。一般用队列数据结构来辅助实现BFS算法。
算法步骤:
1.首先将根节点放入队列中。
2.从队列中取出第一个节点,并检验它是否为目标。如果找到目标,则结束搜寻并回传结果。否则将它所有尚未检验过的直接子节点加入队列中。
3.若队列为空,表示整张图都检查过了一一亦即图中没有欲搜寻的目标。结束搜寻并回传“找不到目标”4.重复步骤2。
算法八: 动态规划算法
动态规划(Dynamicprogramming)是一种在数学、计算机科学和经济学中使用的,通过把原问题分解为相对简单的子问题的方式求解复杂问题的方法。动态规划常常适用干有重叠子问题和最优子结构性质的问题,动态规划方法所耗时间往往远少于朴素解法。
动态规划背后的基本思想非常简单。大致上,若要解一个给定问题,我们需要解其不同部分(即子问题),再合并子问题的解以得出原问题的解。通常许多子问题非常相似,为此动态规划法试图仅仅解决每个子问题一次,从而减少计算量:一旦某个给定子问题的解已经算出,则将其记忆化存储,以便下次需要同一个子问题解之时直接查表。