已知a>0.b>0.m>0,n>0,求证:a^(m+n)+b^(m+n)≥a^mb^n+a^nb^m
已知a>0.b>0.m>0,n>0,求证a^(m+n)+b^(m+n)≥a^mb^n+a^nb^m...
已知a>0.b>0.m>0,n>0,求证a^(m+n)+b^(m+n)≥a^mb^n+a^nb^m
展开
展开全部
因为a>0.b>0.m>0,n>0
设a>b,则
所以,a^m>b^m,a^n>b^n
(a^m-b^m)>0,(a^n-b^n)>0
(a^m-b^m)(a^n-b^n)>0
设a<b,则
所以,a^m<b^m,a^n<b^n
(a^m-b^m)<0,(a^n-b^n)<0
(a^m-b^m)(a^n-b^n)>0
当a=b时
a^m=b^m,a^n=b^n
(a^m-b^m)(a^n-b^n)=0
所以
a^(m+n)+b^(m+n)-(a^mb^n+a^nb^m)≥0
a^(m+n)+b^(m+n)≥a^mb^n+a^nb^m
设a>b,则
所以,a^m>b^m,a^n>b^n
(a^m-b^m)>0,(a^n-b^n)>0
(a^m-b^m)(a^n-b^n)>0
设a<b,则
所以,a^m<b^m,a^n<b^n
(a^m-b^m)<0,(a^n-b^n)<0
(a^m-b^m)(a^n-b^n)>0
当a=b时
a^m=b^m,a^n=b^n
(a^m-b^m)(a^n-b^n)=0
所以
a^(m+n)+b^(m+n)-(a^mb^n+a^nb^m)≥0
a^(m+n)+b^(m+n)≥a^mb^n+a^nb^m
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询