怎么求函数的单调性

求函数单调性的基本方法... 求函数单调性的基本方法 展开
 我来答
柒月黑瞳dae3
高粉答主

推荐于2017-09-04 · 说的都是干货,快来关注
知道大有可为答主
回答量:1.4万
采纳率:93%
帮助的人:1680万
展开全部
求函数单调性的基本方法:
  1. 把握好函数单调性的定义。证明函数单调性一般(初学最好用定义)用定义(谨防循环论证),如果函数解析式异常复杂或者具有某种特殊形式,可以采用函数单调性定义的等价形式证明。另外还请注意函数单调性的定义是[充要命题]。
  2. 熟练掌握基本初等函数的单调性及其单调区间。理解并掌握判断复合函数单调性的方法:同增异减。
  3. 高三选修课本有导数及其应用,用导数求函数的单调区间一般是非常简便的。 还应注意函数单调性的应用,例如求极值、比较大小,还有和不等式有关的问题。
一般的,求函数单调性有如下几个步骤:
  1、取值X1,X2属于{?},并使X1<X2<
  2、作差f(x1)-f(x2)
  3、变形
  4、定号(判断f(x1)-f(x2)的正负)
  5、下结论编辑本段例题
例如:判断函数的单调性y = 1/( x^2-2x-3)。   
设x^2-2x-3=t,   
令x^2-2x-3=0,   
解得:x=3或x=-1,   
当x>3和x<-1时,t>0,   
当-1<x<3时,t<0。   
所以得到x^2-2x-1对称轴是1。   

根据反比例函数性质:   
在整个定义域上是1/t是减函数。   
当t>0时,x>3时, t是增函数,1/t是减函数,   
所以(3,+∞)是减区间,而x<-1时,t是减函数,   
所以1/t是增函数。   
因此(-∞,-1)是增区间,   
当x<0时,   -1<x<1,t是减函数,   
所以1/t是增函数,   
因此(-1,1)是增区间,   而1<x<3时,t是增函数,1/t是减函数,   
因此(1,3)是减区间,   得到增区间是(-∞,-1)和(-1,1),   (1,3)和(3,+∞)是减区间。

判断复合函数的单调性
  方法:
  1.导数
  2.构造基本初等函数(已知单调性的函数)
  3.复合函数   根据同增异减口诀,先判断内层函数的单调性,再判断外层函数单调性,在同一定义域上,若两函数单调性相同,则此复合函数在此定义域上为增函数,反之则为减函数。
  4.定义法
  5.数形结合   复合函数的单调性一般是看函数包含的两个函数的单调性   (1)如果两个都是增的,那么函数就是增函数   (2)一个是减一个是增,那就是减函数   (3)两个都是减,那就是增函数
  复合函数求导公式
  F'(g(x)) = [ F(g(x+dx)) - F(g(x)) ] / dx ......   (1) g(x+dx) - g(x) = g'(x)*dx = dg(x) ........   (2) g(x+dx) = g(x) + dg(x) .........   (3) F'(g(x)) = [ F(g(x) + dg(x)) - F(g(x)) ] /dx = [ F(g(x) + dg(x)) - F(g(x)) ] / dg(x) * dg(x)/dx = F'(g) * g'(x)
A4941238
推荐于2017-09-13 · TA获得超过335个赞
知道答主
回答量:203
采纳率:0%
帮助的人:0
展开全部
解:先要弄清概念和研究目的,因为函数本身是动态的,所以判断函数的单调性、奇偶性,还有研究函数切线的斜率、极值等等,都是为了更好地了解函数本身所采用的方法。其次就解题技巧而言,当然是立足于掌握课本上的例题,然后再找些典型例题做做就可以了,这部分知识仅就应付解题而言应该不是很难。最后找些考试试卷题目来解,针对考试会出的题型强化一下,所谓知己知彼百战不殆。
1. 把握好函数单调性的定义。证明函数单调性一般用定义,如果函数解析式异常复杂或者具有某种特殊形式,可以采用函数单调性定义的等价形式证明。另外还请注意函数单调性的定义是[充要命题]。
2. 熟练掌握基本初等函数的单调性及其单调区间。理解并掌握判断符合函数单调性的方法:同增异减。
3. 高三选修课本有导数及其应用,用导数求函数的单调区间一般是非常简便的。
还应注意函数单调性的应用,例如求极值、比较大小,还有和不等式有关的问题。
本回答被提问者采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
月我芳0z
2019-01-22 · TA获得超过3.6万个赞
知道大有可为答主
回答量:1.2万
采纳率:26%
帮助的人:847万
展开全部
从单调性高中课本来说先判断单调区间,在单调区间上任取x1,x2,且x1
0
x1*x2>0;
∴f(x1)-f(x2)>0;
∴f(x)在(-∞,0)和(0,+∞)内单调递减。
如果是高中生像上面那样做可能算详细了吧。
用高数就求导:f(x)'=-1/x^2<0.所以........单调递减。
估计按这个办法能解决一些题吧。剩下的题应该不成问题才对,就当练习吧。
第四个函数由于x≠0,可化为f(x)=(6/x)+1,即一个反比例函数向上移一个单位。
如有疏漏,还望指出。
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
诗韵悠长1i
2021-01-19
知道答主
回答量:2
采纳率:0%
帮助的人:1010
展开全部
从单调性高中课本来说先判断单调区间,在单调区间上任取x1,x2,且x1 0 x1*x2>0; ∴f(x1)-f(x2)>0; ∴f(x)在(-∞,0)和(0,+∞)内单调递减。 如果是高中生像上面那样做可能算详细了吧。 用高数就求导:f(x)'=-1/x^2<0.所以........单调递减。 估计按这个办法能解决一些题吧。剩下的题应该不成问题
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
畅瑛殳鸿熙
2020-05-03 · TA获得超过3952个赞
知道大有可为答主
回答量:3175
采纳率:32%
帮助的人:212万
展开全部
一,函数的性质,二,求导(必须是可以求导),三,定义法,这个有时候比较难且一般应用于大解答题较难,这个就是在定义域内找任意两个数比较大小(可以做差等等)然后证明
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 更多回答(11)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式