高等数学上下册的主要公式
要全的,最好有小例子说明,所有高数的公式都要,太难的可以不要。要参加招工考试,谢谢配合有追加分哦,要是答的好和全,分多多的加邮箱为kidma1986@163.com...
要全的,最好有小例子说明,所有高数的公式都要,太难的可以不要。
要参加招工考试,谢谢配合有追加分哦,要是答的好和全,分多多的加
邮箱为kidma1986@163.com 展开
要参加招工考试,谢谢配合有追加分哦,要是答的好和全,分多多的加
邮箱为kidma1986@163.com 展开
6个回答
展开全部
高等数学公式
导数公式:
基本积分表:
三角函数的有理式积分:
一些初等函数: 两个重要极限:
三角函数公式:
·诱导公式:
函数
角A sin cos tg ctg
-α -sinα cosα -tgα -ctgα
90°-α cosα sinα ctgα tgα
90°+α cosα -sinα -ctgα -tgα
180°-α sinα -cosα -tgα -ctgα
180°+α -sinα -cosα tgα ctgα
270°-α -cosα -sinα ctgα tgα
270°+α -cosα sinα -ctgα -tgα
360°-α -sinα cosα -tgα -ctgα
360°+α sinα cosα tgα ctgα
·和差角公式: ·和差化积公式:
·倍角公式:
·半角公式:
·正弦定理: ·余弦定理:
·反三角函数性质:
高阶导数公式——莱布尼兹(Leibniz)公式:
中值定理与导数应用:
曲率:
定积分的近似计算:
定积分应用相关公式:
空间解析几何和向量代数:
多元函数微分法及应用
微分法在几何上的应用:
方向导数与梯度:
多元函数的极值及其求法:
重积分及其应用:
柱面坐标和球面坐标:
曲线积分:
曲面积分:
高斯公式:
斯托克斯公式——曲线积分与曲面积分的关系:
常数项级数:
级数审敛法:
绝对收敛与条件收敛:
幂级数:
函数展开成幂级数:
一些函数展开成幂级数:
欧拉公式:
三角级数:
傅立叶级数:
周期为 的周期函数的傅立叶级数:
微分方程的相关概念:
一阶线性微分方程:
全微分方程:
二阶微分方程:
二阶常系数齐次线性微分方程及其解法:
(*)式的通解
两个不相等实根
两个相等实根
一对共轭复根
二阶常系数非齐次线性微分方程
导数公式:
基本积分表:
三角函数的有理式积分:
一些初等函数: 两个重要极限:
三角函数公式:
·诱导公式:
函数
角A sin cos tg ctg
-α -sinα cosα -tgα -ctgα
90°-α cosα sinα ctgα tgα
90°+α cosα -sinα -ctgα -tgα
180°-α sinα -cosα -tgα -ctgα
180°+α -sinα -cosα tgα ctgα
270°-α -cosα -sinα ctgα tgα
270°+α -cosα sinα -ctgα -tgα
360°-α -sinα cosα -tgα -ctgα
360°+α sinα cosα tgα ctgα
·和差角公式: ·和差化积公式:
·倍角公式:
·半角公式:
·正弦定理: ·余弦定理:
·反三角函数性质:
高阶导数公式——莱布尼兹(Leibniz)公式:
中值定理与导数应用:
曲率:
定积分的近似计算:
定积分应用相关公式:
空间解析几何和向量代数:
多元函数微分法及应用
微分法在几何上的应用:
方向导数与梯度:
多元函数的极值及其求法:
重积分及其应用:
柱面坐标和球面坐标:
曲线积分:
曲面积分:
高斯公式:
斯托克斯公式——曲线积分与曲面积分的关系:
常数项级数:
级数审敛法:
绝对收敛与条件收敛:
幂级数:
函数展开成幂级数:
一些函数展开成幂级数:
欧拉公式:
三角级数:
傅立叶级数:
周期为 的周期函数的傅立叶级数:
微分方程的相关概念:
一阶线性微分方程:
全微分方程:
二阶微分方程:
二阶常系数齐次线性微分方程及其解法:
(*)式的通解
两个不相等实根
两个相等实根
一对共轭复根
二阶常系数非齐次线性微分方程
展开全部
公式这东西知道上也打不清楚
你上网搜一下吧
高等数学不是看看公式就行的
奉劝你还是看看书吧
认认真真看一周
考完再去求求老师,应该就能过了
你上网搜一下吧
高等数学不是看看公式就行的
奉劝你还是看看书吧
认认真真看一周
考完再去求求老师,应该就能过了
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
是不是要补考啊,哈哈。
还是自己慢慢看,慢慢找吧。
公式这东西·······
还是自己慢慢看,慢慢找吧。
公式这东西·······
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询