数学里的函数是什么意思?
3个回答
展开全部
函数是数学名词,代数式中,凡相关的两数X与Y,对于每个X值,都只有一个Y的对应值。这种对应关系就表示Y是X的函数。
函数(function)的定义通常分为传统定义和近代定义,函数的两个定义本质是相同的,只是叙述概念的出发点不同,传统定义是从运动变化的观点出发,而近代定义是从集合、映射的观点出发。
函数的近代定义是给定一个数集A,假设其中的元素为x,对A中的元素x施加对应法则f,记作f(x),得到另一数集B,假设B中的元素为y,则y与x之间的等量关系可以用y=f(x)表示,函数概念含有三个要素:定义域A、值域B和对应法则f。其中核心是对应法则f,它是函数关系的本质特征。
函数,最早由中国清朝数学家李善兰翻译,出于其著作《代数学》。之所以这么翻译,他给出的原因是“凡此变数中函彼变数者,则此为彼之函数”,也即函数指一个量随着另一个量的变化而变化,或者说一个量。
函数(function)的定义通常分为传统定义和近代定义,函数的两个定义本质是相同的,只是叙述概念的出发点不同,传统定义是从运动变化的观点出发,而近代定义是从集合、映射的观点出发。
函数的近代定义是给定一个数集A,假设其中的元素为x,对A中的元素x施加对应法则f,记作f(x),得到另一数集B,假设B中的元素为y,则y与x之间的等量关系可以用y=f(x)表示,函数概念含有三个要素:定义域A、值域B和对应法则f。其中核心是对应法则f,它是函数关系的本质特征。
函数,最早由中国清朝数学家李善兰翻译,出于其著作《代数学》。之所以这么翻译,他给出的原因是“凡此变数中函彼变数者,则此为彼之函数”,也即函数指一个量随着另一个量的变化而变化,或者说一个量。
北京埃德思远电气技术咨询有限公司
2023-08-25 广告
2023-08-25 广告
"整定计算的工作步骤,大致如下:1.确定整定方案所适应的系统情况。2.与调度部门共同确定系统的各种运行方式。3.取得必要的参数与资料(保护图纸,设备参数等)。4.结合系统情况,确定整定计算的具体原则。5.进行短路计算。6.进行保护的整定计算...
点击进入详情页
本回答由北京埃德思远电气技术咨询有限公司提供
2013-12-17
展开全部
简介
[编辑本段]
在数学领域,函数是一种关系,这种关系使一个集合里的每一个元素对应到另一个(可能相同的)集合里的唯一元素。
----A variable so related to another that for each value assumed by one there is a value determined for the other.
自变量,函数一个与他量有关联的变量,这一量中的任何一值都能在他量中找到对应的固定值。
----A rule of correspondence between two sets such that there is a unique element in the second set assigned to each element in the first set.
函数两组元素一一对应的规则,第一组中的每个元素在第二组中只有唯一的对应量。
函数的概念对于数学和数量学的每一个分支来说都是最基础的。
~‖函数的定义: 设x和y是两个变量,D是实数集的某个子集,若对于D中的每个值x,变量y按照一定的法则有一个确定的值y与之对应,称变量y为变量x的函数,记作 y=f(x).
数集D称为函数的定义域,由函数对应法则或实际问题的要求来确定。相应的函数值的全体称为函数的值域,对应法则和定义域是函数的两个要素。
functions
数学中的一种对应关系,是从非空集合A到实数集B的对应。简单地说,甲随着乙变,甲就是乙的函数 。精确地说,设X是一个非空集合,Y是非空数集 ,f是个对应法则 , 若对X中的每个x,按对应法则f,使Y中存在唯一的一个元素y与之对应 , 就称对应法则f是X上的一个函数,记作y=f(x),称X为函数f(x)的定义域,集合{y|y=f(x),x∈X}为其值域(值域是Y的子集),x叫做自变量,y叫做因变量,习惯上也说y是x的函数。
若先定义映射的概念,可以简单定义函数为:定义在非空数集之间的映射称为函数。
例1:y=sinx X=[0,2π],Y=[-1,1] ,它给出了一个函数关系。当然 ,把Y改为Y1=(a,b) ,a<b为任意实数,仍然是一个函数关系。
其深度y与一岸边点 O到测量点的距离 x 之间的对应关系呈曲线,这代表一个函数,定义域为[0,b]。以上3例展示了函数的三种表示法:公式法 , 表格法和图 像法。
一般地,在一个变化过程中,如果有两个变量X与Y,并且对于X的每一个确定的值,Y都有为一得值与其对应,那么我们就说X是自变量,Y是X的函数。如果当X=A时Y=B,那么B叫做当自变量的值为A时的函数值。
详见:http://baike.baidu.com/view/15061.htm
[编辑本段]
在数学领域,函数是一种关系,这种关系使一个集合里的每一个元素对应到另一个(可能相同的)集合里的唯一元素。
----A variable so related to another that for each value assumed by one there is a value determined for the other.
自变量,函数一个与他量有关联的变量,这一量中的任何一值都能在他量中找到对应的固定值。
----A rule of correspondence between two sets such that there is a unique element in the second set assigned to each element in the first set.
函数两组元素一一对应的规则,第一组中的每个元素在第二组中只有唯一的对应量。
函数的概念对于数学和数量学的每一个分支来说都是最基础的。
~‖函数的定义: 设x和y是两个变量,D是实数集的某个子集,若对于D中的每个值x,变量y按照一定的法则有一个确定的值y与之对应,称变量y为变量x的函数,记作 y=f(x).
数集D称为函数的定义域,由函数对应法则或实际问题的要求来确定。相应的函数值的全体称为函数的值域,对应法则和定义域是函数的两个要素。
functions
数学中的一种对应关系,是从非空集合A到实数集B的对应。简单地说,甲随着乙变,甲就是乙的函数 。精确地说,设X是一个非空集合,Y是非空数集 ,f是个对应法则 , 若对X中的每个x,按对应法则f,使Y中存在唯一的一个元素y与之对应 , 就称对应法则f是X上的一个函数,记作y=f(x),称X为函数f(x)的定义域,集合{y|y=f(x),x∈X}为其值域(值域是Y的子集),x叫做自变量,y叫做因变量,习惯上也说y是x的函数。
若先定义映射的概念,可以简单定义函数为:定义在非空数集之间的映射称为函数。
例1:y=sinx X=[0,2π],Y=[-1,1] ,它给出了一个函数关系。当然 ,把Y改为Y1=(a,b) ,a<b为任意实数,仍然是一个函数关系。
其深度y与一岸边点 O到测量点的距离 x 之间的对应关系呈曲线,这代表一个函数,定义域为[0,b]。以上3例展示了函数的三种表示法:公式法 , 表格法和图 像法。
一般地,在一个变化过程中,如果有两个变量X与Y,并且对于X的每一个确定的值,Y都有为一得值与其对应,那么我们就说X是自变量,Y是X的函数。如果当X=A时Y=B,那么B叫做当自变量的值为A时的函数值。
详见:http://baike.baidu.com/view/15061.htm
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
2013-12-17
展开全部
在数学领域,函数是一种关系,这种关系使一个集合里的每一个元素对应到另一个(可能相同的)集合里的唯一元素。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询