已知函数f(x)=x/(1+x^2)的定义域为(-1,1) 证明其单调性
1个回答
展开全部
定义法:
设-1<x1<x2<1
1+x^2≥1>0,分式恒有意义
f(x2)-f(x1)=x2/(1+x2²) -x1/(1+x1²)
=[x2(1+x1²)-x1(1+x2²)]/[(1+x1²)(1+x2²)]
=(x2+x1²x2-x1-x1x2²)/[(1+x1²)(1+x2²)]
=[(x2-x1)-x1x2(x2-x1)]/[(1+x1²)(1+x2²)]
=(x2-x1)(1-x1x2)/[(1+x1²)(1+x2²)]
-1<x1<1 -1<x2<1 -1<x1x2<1 1-x1x2>0
x2>x1 x2-x1>0
(1+x1²)(1+x2²)>0
(x2-x1)(1-x1x2)/[(1+x1²)(1+x2²)]>0
f(x2)>f(x1),函数在区间(-1,1)上单调递增。
导数法:
f'(x)=[x'(1+x²)-x(1+x²)']/(1+x²)²
=(1+x²-2x²)/(1+x²)²
=(1-x²)/(1+x²)²
-1<x<1 0≤x²<1 1-x²>0,又(1+x²)²>0
f'(x)>0,函数在区间(-1,1)上单调递增。
设-1<x1<x2<1
1+x^2≥1>0,分式恒有意义
f(x2)-f(x1)=x2/(1+x2²) -x1/(1+x1²)
=[x2(1+x1²)-x1(1+x2²)]/[(1+x1²)(1+x2²)]
=(x2+x1²x2-x1-x1x2²)/[(1+x1²)(1+x2²)]
=[(x2-x1)-x1x2(x2-x1)]/[(1+x1²)(1+x2²)]
=(x2-x1)(1-x1x2)/[(1+x1²)(1+x2²)]
-1<x1<1 -1<x2<1 -1<x1x2<1 1-x1x2>0
x2>x1 x2-x1>0
(1+x1²)(1+x2²)>0
(x2-x1)(1-x1x2)/[(1+x1²)(1+x2²)]>0
f(x2)>f(x1),函数在区间(-1,1)上单调递增。
导数法:
f'(x)=[x'(1+x²)-x(1+x²)']/(1+x²)²
=(1+x²-2x²)/(1+x²)²
=(1-x²)/(1+x²)²
-1<x<1 0≤x²<1 1-x²>0,又(1+x²)²>0
f'(x)>0,函数在区间(-1,1)上单调递增。
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询