高中数学,如图,这道选择题怎么做?

vlsera
2014-03-06 · TA获得超过623个赞
知道小有建树答主
回答量:381
采纳率:0%
帮助的人:330万
展开全部

注:为避免混淆,把原题的函数f(x)改为y。

一、题目要求原函数y=3cos(πx/2)-log(x)/log(2)-1/2的零点,即y=3cos(πx/2)-log(x)/log(2)-1/2=0处的x的取值。

于是有3cos(πx/2) = log(x)/log(2)+1/2

可以把上式两边看成两个新的函数:

f(x)=log(x)/log(2)+1/2

g(x)= 3cos(πx/2)

当在同一坐标系下的同一点x的两个函数f(x)和g(x)取值相等时,y=0,即y在该x处取得零点。于是以下步骤的目标就是寻求这两个函数在同一坐标系下的交点。

 

二、分析f(x)和g(x)的定义域和值域:

f(x)的定义域为(0, +∞),g(x)的定义域为(-∞, +∞)。

两者定义域的交集为(0, +∞)。

f(x)的值域为(-∞, +∞),g(x)的值域为[-3, +3]。

 

三、绘制草图并分析两个函数的交点

上图是用绘图软件绘制的精确图形。但手绘草图不可能那么精确,一时难以估计两个图像的交点位置,可循以下思路和步骤绘图:

在x轴的(0, +∞)区间可以划分如下几个子区间:(0, 1], (1, 3], (3,4], (4, 5], (5, 7], (7, 8], (8, +∞)

     1.  (0, 1]区间f(x)从-∞单调递增,g(x)从3单调递减。

当x=1时,f(1)=0.5, g(1)=0。因此在此区间两函数必有一个交点。

     2.  (1, 3]区间f(x)>0,g(x)<0,两者没有交点。

     3.  (3, 4]区间 f(x)继续单调递增,g(x)也从0单调递增。

f(3)=log(3)/log(2)+0.5

g(3)=0

可见f(3)>g(3)

f(4)=log(4)/log(2)+0.5=2.5

g(4)=3cos(2π)=3

可见f(4)<g(4)

因此可知在此区间两函数必有一个交点。

     4.  (4, 5]区间f(x)从2.5继续单调递增,g(x)从3单调递减。

已知f(4)<g(4)

而f(5)=log(5)/log(2)+0.5

g(5)=3cos(5π/2)=0

显然f(5)>g(5)

因此可知在此区间两函数必有一个交点。

     5.  (5, 7]区间与(1, 3]区间同理,f(x)>0,g(x)<0,两者没有交点。

     6.  (7, 8]区间f(x)继续单调递增,g(x)也从0单调递增。

f(7)= log(7)/log(2)+0.5

g(7)= 3cos(7π/2)=0

显然f(7)>g(7)

f(8)= log(8)/log(2)+0.5=3.5

g(8)= 3cos(8π/2)=3

f(8)>g(8)

因此在此区间两者没有交点。

     7.  (8, +∞)区间,f(x)从3.5继续单调递增至+∞,其值域已经超过g(x)的值域上限3,因此不可能再有交点。

 

综上所述,f(x)和g(x)的交点共有3个,也即y=g(x)-f(x)的零点共有3个。选择选项B。

涂智华
2014-03-06 · 知道合伙人教育行家
涂智华
知道合伙人教育行家
采纳数:603 获赞数:1804
数学竞赛获奖选手

向TA提问 私信TA
展开全部
判断函数3cos(pi/2*x)和log2(x)+1/2交点的个数
利用数形结合法,做出两函数图像的大致形状
由函数定义域可知,只考虑x>0部分
易知(0,1)有交点
当log2(x)+1/2=3,解得:x=5.66
故可知(3,4)内有;两个交点,此外log2(x)+1/2>3,不可能和3cos(pi/2*x)有交点
追问
可以画个图吗?
追答

已赞过 已踩过<
你对这个回答的评价是?
评论 收起
匿名用户
2014-03-06
展开全部
求函数零点的方法

求方程f(x)=0的实数根,就是确定函数y=f(x)的零点。一般的,对于不能用公式法求根的方程f(x)=0来说,我们可以将它与函数y=f(x)联系起来,利用函数的性质找出零点,从而求出方程的根。
函数y=f(x)有零点,即是y=f(x)与横轴有交点,方程f(x)=0有实数根,则△≥0,可用来求系数,也可与导函数的表达式联立起来求解未知的系数。
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
开自明V9
2014-03-06 · 超过14用户采纳过TA的回答
知道答主
回答量:190
采纳率:100%
帮助的人:45.3万
展开全部
这边熊孩子问题真多
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
匿名用户
2014-03-06
展开全部
建议用到函数的方法去解这道题 你现在是高二吗?
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 更多回答(3)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式