已知椭圆x2/16+y2/4=1,求斜率为2的平行弦中点的轨迹方程
1个回答
展开全部
直线y=2x+m
代入x²+4y²=16
17x²+16mx+4m²-16=0
中点横坐标是x=(x1+x2)/2=-8m/17
纵坐标是y=(y1+y2)/2
=(2x1+m+2x2+m)/2
=(x1+x2)+m
=-16m/17+m
=m/17
所以x/y=-8
17x²+16mx+4m²-16=0有解
则256m²-272m²+1088>=0
-2√17<=m<=2√17
x=-8m/17
所以
x+8y=0,其中-16√17/17<=x<=16√17/17
代入x²+4y²=16
17x²+16mx+4m²-16=0
中点横坐标是x=(x1+x2)/2=-8m/17
纵坐标是y=(y1+y2)/2
=(2x1+m+2x2+m)/2
=(x1+x2)+m
=-16m/17+m
=m/17
所以x/y=-8
17x²+16mx+4m²-16=0有解
则256m²-272m²+1088>=0
-2√17<=m<=2√17
x=-8m/17
所以
x+8y=0,其中-16√17/17<=x<=16√17/17
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询