设函数f(x)在闭区间【a,b】上连续,在开区间(a,b)内可导,并且f(a)=f(b)=0,证明

设函数f(x)在闭区间【a,b】上连续,在开区间(a,b)内可导,并且f(a)=f(b)=0,证明在(a,b)内至少有一点x,使得f'(x)=2014xf(x)... 设函数f(x)在闭区间【a,b】上连续,在开区间(a,b)内可导,并且f(a)=f(b)=0,证明在(a,b)内至少有一点x,使得f'(x)=2014xf(x) 展开
尹六六老师
2013-12-31 · 知道合伙人教育行家
尹六六老师
知道合伙人教育行家
采纳数:33772 获赞数:147244
百强高中数学竞赛教练, 大学教案评比第一名, 最受学生欢迎教

向TA提问 私信TA
展开全部

更多追问追答
追答
二十年教学经验,专业值得信赖!
如果你认可我的回答,敬请及时采纳,在右上角点击“评价”,然后就可以选择“满意,问题已经完美解决”了。
追问
老师,还有一个题
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式