已知四棱柱ABCD一A1B1C1D1的侧棱AA1垂直于底面,底面ABCD为直角梯形,AD∥BC, AB⊥BC, AD=AA1=2,AB=BC=1
1个回答
2013-12-08
展开全部
解:(1)取CD的中点F,连接EF,则EF是△DA1C的中位线,∴EF∥A1C.∵A1C⊂面A1BC,
EF在面A1BC 外,∴EF∥平面A1BC.
(2)∵底面ABCD为直角梯形,AD∥BC,AB⊥BC,AD=AA1=2,AB=BC=1,∴AC=CD=√2
由勾股定理得 AC⊥CD.再由AA1垂直于底面得,AA1⊥CD.而AC和AA1是平面A1ACC1内的两条相交直线,
∴CD⊥平面A1ACC1.
矩形A1ACC1的面积等于 AA1×AC=2×√2=2√2,四棱锥D-A1ACC1的高 CD=√2
四棱锥D-A1ACC1的体积为1/3AA1×AC×CD=4/3
EF在面A1BC 外,∴EF∥平面A1BC.
(2)∵底面ABCD为直角梯形,AD∥BC,AB⊥BC,AD=AA1=2,AB=BC=1,∴AC=CD=√2
由勾股定理得 AC⊥CD.再由AA1垂直于底面得,AA1⊥CD.而AC和AA1是平面A1ACC1内的两条相交直线,
∴CD⊥平面A1ACC1.
矩形A1ACC1的面积等于 AA1×AC=2×√2=2√2,四棱锥D-A1ACC1的高 CD=√2
四棱锥D-A1ACC1的体积为1/3AA1×AC×CD=4/3
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询