拉格朗日函数是什么,在微观经济学中怎么应用?

 我来答
阿苗苗苗苗_喵
推荐于2017-10-06 · TA获得超过2947个赞
知道答主
回答量:310
采纳率:100%
帮助的人:11.4万
展开全部
  1. 拉格朗日函数:如果在力学系上只有保守力的作用,则力学系及其运动条件就完全可以用拉格朗日函数表示出来。这里说的运动条件是指系统所受的主动力和约束。

    (1)在分析力学里,一个动力系统的拉格朗日量(英语:Lagrangian),又称为拉格朗日函数,是描述整个物理系统的动力状态的函数,对於一般经典物理系统,通常定义为动能减去势能。

    (2)在分析力学里,一个动力系统的拉格朗日量(英语:Lagrangian),又称为拉格朗日函数,是描述整个物理系统的动力状态的函数,对於一般经典物理系统,通常定义为动能减去势能。

    出自《百度百科》

  2. 微观经济学研究消费者行为时,所要阐述的核心问题是消费者均衡的原则。所谓消费者均衡指的是一个有理性的消费者所采取的均衡购买行为。进一步说,它是指保证消费者实现效用最大化的均衡购买行为。 但人的需要或欲望是无限的,而满足需要的手段是有限的。所以微观经济学所说的效用最大化只能是一种有限制的效用最大化。而这种限制的因素就是各种商品的价格和消费者的货币收入水平。

    边际效用的公式表达为:MU=∂TU/∂Q(商品数量(Q),商品价格(P), 收入(I) )

    参考:http://wenku.baidu.com/link?url=27mOmEtTJYWIY6IF0s-yGPwdG1UJJJC-hGByIFzaQhqTN-iqOj_63rz6XEYK9lVzUOE3EURPIrenFcJVyEuxsyuDIzwIIV9ezI9KGFJwVt3

Sievers分析仪
2024-12-30 广告
是的。传统上,对于符合要求的内毒素检测,最终用户必须从标准内毒素库存瓶中构建至少一式两份三点标准曲线;必须有重复的阴性控制;每个样品和PPC必须一式两份。有了Sievers Eclipse内毒素检测仪,这些步骤可以通过使用预嵌入的内毒素标准... 点击进入详情页
本回答由Sievers分析仪提供
符恕燕春
2019-09-08 · TA获得超过3.6万个赞
知道大有可为答主
回答量:1.2万
采纳率:30%
帮助的人:2274万
展开全部
先说用法吧,拉格朗日乘子法是用来求有限制的下最优解的,这里限制条件就是制约函数,求得就是在满足g(x)=b时f(x)的最值。
下面说具体内容,举个栗子比较容易讲:
假设f(x)是效用函数,g(x)=b是成本约束,为了简便x=x好了(只有一个约束),另外假设x的价格为p,后面会用到。
那等式l=f(x)+λ[b-g(x)]的意义就是如何在花光b那么多预算的时候让f(x)最大,答案显而易见就是当b=g(x)时所有预算花光,剁手剁得很欢快。这时λ就是收入的边际效用,也就是b每增加1各单位,效用就会增加λ那么多。证明如下:
对l求x和λ的一阶偏导,得到:
1.
dl/dx=f'(x)+λg'(x)=0
2.
dl/dλ=b-g(x)=0
第2个等式就是制约条件,意思就是预算被花光(因为完整的拉格朗日乘子法是允许不花光的)。
等式1变形得
3.
λ=f'(x)/g'(x)
λ的定义就出来了,也就是当b每增加1个单位,g'(x)=1/p,就是花在x上的钱多了1,同时买了1/p那么多的x,这时λ=f'(x)/p,就是1单位收入带来的额外效用。
这时因为x是一元的所以最值不用另外求,就是当x=g^(-1)[b]时f(x)最大。
现在变成二元的,x=(x,y),g(.)依旧是成本,f(.)还是效用,但这时λ还是一样的意义,只不过一阶偏导变成了3个:
dl/dx=0
...展开先说用法吧,拉格朗日乘子法是用来求有限制的下最优解的,这里限制条件就是制约函数,求得就是在满足g(x)=b时f(x)的最值。
下面说具体内容,举个栗子比较容易讲:
假设f(x)是效用函数,g(x)=b是成本约束,为了简便x=x好了(只有一个约束),另外假设x的价格为p,后面会用到。
那等式l=f(x)+λ[b-g(x)]的意义就是如何在花光b那么多预算的时候让f(x)最大,答案显而易见就是当b=g(x)时所有预算花光,剁手剁得很欢快。这时λ就是收入的边际效用,也就是b每增加1各单位,效用就会增加λ那么多。证明如下:
对l求x和λ的一阶偏导,得到:
1.
dl/dx=f'(x)+λg'(x)=0
2.
dl/dλ=b-g(x)=0
第2个等式就是制约条件,意思就是预算被花光(因为完整的拉格朗日乘子法是允许不花光的)。
等式1变形得
3.
λ=f'(x)/g'(x)
λ的定义就出来了,也就是当b每增加1个单位,g'(x)=1/p,就是花在x上的钱多了1,同时买了1/p那么多的x,这时λ=f'(x)/p,就是1单位收入带来的额外效用。
这时因为x是一元的所以最值不用另外求,就是当x=g^(-1)[b]时f(x)最大。
现在变成二元的,x=(x,y),g(.)依旧是成本,f(.)还是效用,但这时λ还是一样的意义,只不过一阶偏导变成了3个:
dl/dx=0
dl/dy=0
dl/dλ=0
三元一次方程组解出唯一解的话就是最优了。
当x上升为n元时,也就意味着要同时考虑n个条件,就像是同时用b购买有n种商品,要求效用的最优解。这时唯一的不同只是方程组的未知数变多了,解法还是一样的。
至于b的元数...你遇到更高元的限制条件再问吧...收起
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
犯得伤感
2014-04-27
知道答主
回答量:21
采纳率:0%
帮助的人:18.7万
展开全部
这些问题很难一两句解答,拉格朗日函数就是拉格朗日公式在百度百科有,一般经济学不需要用到过多数学,想要深入研究的话建议阅读范里安的《微观经济学现代观点》或者尼克尔森的《微观经济学》
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
zcandy18
2014-10-13
知道答主
回答量:1
采纳率:0%
帮助的人:1326
展开全部
L(x, 入) = u (x)-入(px-m)
分别对x和入求导,可以求出x值。为x在最大效用下的最优解。
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 更多回答(2)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式