求学霸!!!助攻!!!急!!!过程?!!!!
1个回答
展开全部
由已知条件可以得出x<0,且y<0;
x+y=-4
两边平方:
x²+y²+2xy=16
x²+y²+2*6=16
x²+y²=16-12=4;
(1)
原式=√[(xy)/x²]+√[(xy)/y²]
=√(xy)/(-x)+√(xy)/(-y)
=-y√(xy)/(xy)-x√(xy)/(xy)
=-(x+y)√(xy)/(xy)
=-(-4)√(6)/6
=(2/3)√6;
(2)
原式=x√[x²/(xy)]+y√[y²/(xy)]
=x(-x)/√(xy)+y(-y)/√(xy)
=-x²/√(xy)-y²/√(xy)
=-(x²+y²)/√(xy)
=-(4)/√(6)
=-4√6/(√6*√6)
=-4√6/6
=-(2/3)√6;
x+y=-4
两边平方:
x²+y²+2xy=16
x²+y²+2*6=16
x²+y²=16-12=4;
(1)
原式=√[(xy)/x²]+√[(xy)/y²]
=√(xy)/(-x)+√(xy)/(-y)
=-y√(xy)/(xy)-x√(xy)/(xy)
=-(x+y)√(xy)/(xy)
=-(-4)√(6)/6
=(2/3)√6;
(2)
原式=x√[x²/(xy)]+y√[y²/(xy)]
=x(-x)/√(xy)+y(-y)/√(xy)
=-x²/√(xy)-y²/√(xy)
=-(x²+y²)/√(xy)
=-(4)/√(6)
=-4√6/(√6*√6)
=-4√6/6
=-(2/3)√6;
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询