怎么利用pandas做数据分析
1. 基本使用:创建DataFrame. DataFrame是一张二维的表,大家可以把它想象成一张Excel表单或者Sql表。Excel 2007及其以后的版本的最大行数是1048576,最大列数是16384,超过这个规模的数据Excel就会弹出个框框“此文本包含多行文本,无法放置在一个工作表中”。Pandas处理上千万的数据是易如反掌的sh事情,同时随后我们也将看到它比SQL有更强的表达能力,可以做很多复杂的操作,要写的code也更少。
说了一大堆它的好处,要实际感触还得动手码代码。首要的任务就是创建一个DataFrame,它有几种创建方式:
(1)列表,序列(pandas.Series), numpy.ndarray的字典
二维numpy.ndarray
别的DataFrame
结构化的记录(structured arrays)
(2)其中,二维ndarray创建DataFrame,代码敲得最少:
import pandas as pd
import numpy as np
df = pd.DataFrame(np.random.randn(10, 4))
df
0 1 2 3
0 0.927474 0.127571 1.655908 0.570818
1 -0.425084 -0.382933 0.468073 -0.862898
2 -1.602712 -0.225793 -0.688641 1.167477
3 -1.771992 -0.692575 -0.693494 -1.063697
4 -0.456724 0.371165 1.883742 -0.344189
5 1.024734 0.647224 1.134449 0.266797
6 1.247507 0.114464 2.271932 -0.682767
7 -0.190627 -0.096997 -0.204778 -0.440155
8 -0.471289 -1.025644 -0.741181 -1.707240
9 -0.172242 0.702187 -1.138795 -0.112005
(3)通过describe方法,可以对df中的数据有个大概的了解:
df.describe()
0 1 2 3
count 10.000000 10.000000 10.000000 10.000000
mean -0.189096 -0.046133 0.394722 -0.320786
std 1.027134 0.557420 1.258019 0.837497
min -1.771992 -1.025644 -1.138795 -1.707240
25% -0.467648 -0.343648 -0.692281 -0.817865
50% -0.307856 0.008734 0.131648 -0.392172
75% 0.652545 0.310266 1.525543 0.172096
max 1.247507 0.702187 2.271932 1.167477
2. 改变cell。
3. group by。
4. 读写文件。
2023-08-15 广告
2019-01-28 · 大数据人才培养的机构
pandas的初级功能
1、逻辑运算
data[data['column_1']=='french']
data[(data['column_1']=='french') & (data['year_born']==1990)]
data[(data['column_1']=='french')&(data['year_born']==1990)&(data['city']=='London')]
如果要根据逻辑操作对数据进行运算,在使用& (AND)、~ (NOT)和| (OR)等逻辑操作之前和之后添加“(”&“)”。
data[data['column_1'].isin(['french', 'english'])]
不要为同一列编写多个OR,最好是使用.isin()函数。
2、基本绘图
多亏了matplotlib包,这个特性才得以实现。就像我们在介绍中说的,它可以直接用在pandas身上。
如果你使用Jupyter,在绘图之前,不要忘记写这一行(在代码中只写一次)
3、更新数据
data.loc[8, 'column_1'] = 'english'
将' column_1 '的第8行值替换为' english '
data.loc[data['column_1']=='french', 'column_1'] = 'French'
在一行中更改多行值
pandas的中级功能
1、计算功能
data['column_1'].value_counts
2、对全行、全列或所有数据的操作
data['column_1'].map(len)
len()函数应用于“column_1”的每个元素
map()操作将一个函数应用于列的每个元素。
data['column_1'].map(len).map(lambda x : x/100).plot()
pandas的另一个特点是进行链式操作。它可以帮助你在一行代码中执行多个操作,从而更加简单和高效。
data.apply(sum)
.apply()将函数应用于列。
.applymap()将一个函数应用于表(DataFrame)中的所有单元格。
3、tqdm包
在处理大型数据集时,pandas可能需要一些时间来运行.map()、.apply()、.applymap()操作。tqdm是一个非常有用的包,它可以帮助预测这些操作何时完成。
from tqdm import tqdm_notebook
tqdm_notebook().pandas()
用pandas设置tqdm
data['column_1'].progress_map(lambda x : x.count('e'))
将.map()替换为.progress_map(),.apply()和.applymap()也是一样
图4 这是你在Jupyter上看到的的进度条
4、相关矩阵和散射矩阵
data.corr()
data.corr().applymap(lambda x : int(x*100)/100)
......
>>> frame
total_bill tip sex smoker day time size
1 16.99 1.01 Female No Sun Dinner 2
2 10.34 1.66 Male No Sun Dinner 3
3 21.01 3.5 Male No Sun Dinner 3
4 23.68 3.31 Male No Sun Dinner 2
5 24.59 3.61 Female No Sun Dinner 4
6 25.29 4.71 Male No Sun Dinner 4
7 8.77 2 Male No Sun Dinner 2
8 26.88 3.12 Male No Sun Dinner 4
9 15.04 1.96 Male No Sun Dinner 2
10 14.78 3.23 Male No Sun Dinner 2
pandas兼具NumPy高性能的数组计算功能以及电子表格和关系型数据库(如SQL)灵活的数据处理功能。它提供了复杂精细的索引功能,以便更为便捷地完成重塑、切片和切块、聚合以及选取数据子集等操作。pandas将是我在本书中使用的主要工具。
对于金融行业的用户,pandas提供了大量适用于金融数据的高性能时间序列功能和工具。事实上,我一开始就是想把pandas设计为一款适用于金融数据分析应用的工具。
对于使用R语言进行统计计算的用户,肯定不会对DataFrame这个名字感到陌生,因为它源自于R的data.frame对象。但是这两个对象并不相同。R的data.frame对象所提供的功能只是DataFrame对象所提供的功能的一个子集。虽然本书讲的是Python,但我偶尔还是会用R做对比,因为它毕竟是最流行的开源数据分析环境,而且很多读者都对它很熟悉。
pandas这个名字本身源自于panel data(面板数据,这是计量经济学中关于多维结构化数据集的一个术语)以及Python data analysis(Python数据分析)。
基本使用:创建DataFrame. DataFrame是一张二维的表,大家可以把它想象成一张Excel表单或者Sql表。Excel 2007及其以后的版本的最大行数是1048576,最大列数是16384,超过这个规模的数据Excel就会弹出个框框“此文本包含多行文本,无法放置在一个工作表中”。Pandas处理上千万的数据是易如反掌的sh事情,同时随后我们也将看到它比SQL有更强的表达能力,可以做很多复杂的操作,要写的code也更少。
1、Python:是一种面向对象、直译式计算机程序设计语言,由荷兰人Guido van Rossum发明于1989年,1991年发行第一个公开发行版。它常被昵称为胶水语言,它能够很轻松的把用其他语言制作的各种模块(尤其是C/C++)轻松地联结在一起。
2、Pandas:是Python下一个开源数据分析的库,它提供的数据结构DataFrame极大的简化了数据分析过程中一些繁琐操作。